Astronomical pacing of methane release in the Early Jurassic period

  • An Erratum to this article was published on 01 December 2005

Abstract

A pronounced negative carbon-isotope (δ13C) excursion of 5–7‰ (refs 1–7) indicates the occurrence of a significant perturbation to the global carbon cycle during the Early Jurassic period (early Toarcian age, 183 million years ago). The rapid release of 12C-enriched biogenic methane as a result of continental-shelf methane hydrate dissociation has been put forward as a possible explanation for this observation1,7,8. Here we report high-resolution organic carbon-isotope data from well-preserved mudrocks in Yorkshire, UK, which demonstrate that the carbon-isotope excursion occurred in three abrupt stages, each showing a shift of -2‰ to -3‰. Spectral analysis of these carbon-isotope measurements and of high-resolution carbonate abundance data reveals a regular cyclicity. We interpret these results as providing strong evidence that methane release proceeded in three rapid pulses and that these pulses were controlled by astronomically forced changes in climate, superimposed upon longer-term global warming. We also find that the first two pulses of methane release each coincided with the extinction of a large proportion of marine species9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: δ 13 C org and CaCO 3 data through lower Toarcian sedimentary deposits.
Figure 2: Spectral analysis of early Toarcian data.

References

  1. 1

    Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–160 (2004)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Küspert, W. G. in Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.) 482–501 (Springer, Berlin, 1982)

    Google Scholar 

  3. 3

    Schouten, S., Van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M. & Damste, J. S. Effects of an oceanic anoxic event on the stable carbon isotopic composition of Early Toarcian carbon. Am. J. Sci. 300, 1–22 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Sælen, G., Tyson, R. V., Telnæs, N. & Talbot, M. R. Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and the Kimmeridge Clay (Upper Jurassic) formations, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 163–196 (2000)

    Article  Google Scholar 

  5. 5

    Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate”. Palaeogeogr. Palaeoclimatol. Palaeoecol. 169, 273–299 (2001)

    Article  Google Scholar 

  6. 6

    Jenkyns, H. C., Gröcke, D. R. & Hesselbo, S. P. Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Palaeoceanography 16, 593–603 (2001)

    ADS  Article  Google Scholar 

  7. 7

    Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Beerling, D. J., Lomas, M. R. & Gröcke, D. R. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. Am. J. Sci. 302, 28–49 (2002)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Harries, P. J. & Little, C. T. S. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999)

    Article  Google Scholar 

  10. 10

    Jenkyns, H. C. The Early Toarcian (Jurassic) Anoxic Event - stratigraphic, sedimentary, and geochemical evidence. Am. J. Sci. 288, 101–151 (1988)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P. & Parkinson, D. N. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 159, 351–378 (2002)

    CAS  Article  Google Scholar 

  12. 12

    Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett. 212, 307–320 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Jenkyns, H. C. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Phil. Trans. R. Soc. Lond. A 361, 1885–1916 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 (1995)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bucefalo Palliani, R., Mattioli, E. & Riding, J. B. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Mar. Micropaleontol. 46, 223–245 (2002)

    ADS  Article  Google Scholar 

  16. 16

    Pálfy, J., Smith, P. L. & Mortensen, J. K. Dating the end-Triassic and Early Jurassic mass extinctions, correlative large igneous provinces, and isotopic events. Geol. Soc. Am. Spec. Pap. 356, 523–532 (2002)

    Google Scholar 

  17. 17

    Hinnov, L. A. & Park, J. J. Strategies for assessing Early-Middle (Pliensbachian-Aalenian) Jurassic cyclochronologies. Phil. Trans. R. Soc. Lond. A 357, 1831–1859 (1999)

    ADS  Article  Google Scholar 

  18. 18

    Hallam, A. Estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to early Jurassic). J. Geol. Soc. Lond. 154, 773–779 (1997)

    Article  Google Scholar 

  19. 19

    Cope, J. C. W. Discussion on estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to Early Jurassic). J. Geol. Soc. Lond. 155, 421–422 (1998)

    Article  Google Scholar 

  20. 20

    Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S. & Duncan, A. R. The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res. 102, 18127–18138 (1997)

    ADS  Article  Google Scholar 

  21. 21

    Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    ADS  Article  Google Scholar 

  22. 22

    Paull, C. K., Buelow, W. J., Ussler, W. & Borowski, W. S. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology 24, 143–146 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bains, S., Corfield, R. M. & Norris, R. D. Mechanisms of climate warming at the end of the Paleocene. Science 285, 724–727 (1999)

    CAS  Article  Google Scholar 

  24. 24

    Röhl, U., Bralower, T. J., Norris, R. D. & Wefer, G. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28, 927–930 (2000)

    ADS  Article  Google Scholar 

  25. 25

    Kurtz, A. C., Kump, L. R.,, Arthur, M. A.,, Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulphur cycles. Paleoceanography 18, 1–14 (2003)

    Article  Google Scholar 

  26. 26

    Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kent, D. V. et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett. 211, 13–26 (2003)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Howarth, M. K. The ammonite family Hildoceratidae in the lower Jurassic of Britain. Palaeogr. Soc. Monogr. 145, 1–200 (1992)

    Google Scholar 

  29. 29

    Mann, M. E. & Lees, J. M. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33, 409–445 (1996)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

D.B.K. was supported by a NERC CASE studentship with Bartington Instruments Ltd. We thank colleagues in the Department of Earth Sciences, The Open University, and the Geologisches Institut, Universität zu Köln, for analytical assistance and comments on an earlier draft of this manuscript. Author Contributions D.B.K, A.L.C. and A.S.C. collected samples and contributed equally to interpretation. L.S. was responsible for the carbon-isotope analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David B. Kemp.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Carbon-isotope data across the early Toarcian compiled from various sources, which shows pronounced negative excursions in the δ13C of marine organic compounds, bulk marine organic matter, terrestrial wood material, and marine inorganic carbonate. (PDF 1136 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kemp, D., Coe, A., Cohen, A. et al. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–399 (2005). https://doi.org/10.1038/nature04037

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.