Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A circumstellar disk associated with a massive protostellar object


The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects1, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed2, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects3,4, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object5, M17, is disputed6. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin–Neugebauer protostellar object, which has a mass of at least seven solar masses (M). This strongly supports the theory that stars with masses of at least 7M form in the same way as lower mass stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarimetric result of the observation.
Figure 2: Results of Monte Carlo simulations.
Figure 3: Polarization degrees as a function of the distance R from the central object in the H-band.

Similar content being viewed by others


  1. Bonnell, I. A., Bate, M. R. & Zinnecker, H. On the formation of massive stars. Mon. Not. R. Astron. Soc. 298, 93–102 (1998)

    Article  ADS  Google Scholar 

  2. Shu, F. H., Adams, F. C. & Lizano, S. Star formation in molecular clouds—Observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    Article  ADS  CAS  Google Scholar 

  3. O'Dell, C. R. & Wen, Z. Postrefurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. Astrophys. J. 435, 194–202 (1994)

    Article  ADS  Google Scholar 

  4. Perrin, M. D. et al. Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars. Science 303, 1345–1348 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Chini, R. et al. The formation of a massive protostar through the disk accretion of gas. Nature 429, 155–157 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Sako, S. et al. No high-mass protostars in the young stellar object M17–S01. Nature 434, 995–998 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Becklin, E. E. & Neugebauer, G. Observations of an infrared star in the Orion nebula. Astrophys. J. 147, 799–802 (1967)

    Article  ADS  Google Scholar 

  8. Genzel, R. & Stutzki, J. The Orion molecular cloud and star-forming region. Annu. Rev. Astron. Astrophys. 27, 41–85 (1989)

    Article  ADS  CAS  Google Scholar 

  9. Gezari, D. Y., Backman, D. E. & Werner, M. W. Mid-infrared imaging of Orion BN/KL. II. Luminosity sources, extinction distribution, and the nature of IRc2. Astrophys. J. 509, 283–298 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Tan, J. C. The Becklin-Neugegauer object as a runaway B star, ejected 4000 years ago from the θ1 Orionis C system. Astrophys. J. 607, L47–L50 (2004)

    Article  ADS  Google Scholar 

  11. Hillenbrand, L. A., Carpenter, J. M. & Skrutskie, M. F. Periodic photometric variability in the Becklin-Neugegauer object. Astrophys. J. 547, L53–L56 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Davis, L. & Greenstein, H. L. The polarization of starlight by aligned dust grains. Astrophys. J. 114, 206–240 (1951)

    Article  ADS  CAS  Google Scholar 

  13. Jones, T. J. Infrared polarimetry and the interstellar magnetic field. Astrophys. J. 346, 728–734 (1989)

    Article  ADS  Google Scholar 

  14. Minchin, N. R. et al. Near-infrared imaging polarimetry of bipolar nebulae—I. The BN-KL region of OMC-1. Mon. Not. R. Astron. Soc. 248, 715–729 (1991)

    Article  ADS  Google Scholar 

  15. Chrysostomou, A., Hough, J. H., Burton, M. G. & Tamura, M. Twisting magnetic fields in the core region of OMC-1. Mon. Not. R. Astron. Soc. 268, 325–334 (1994)

    Article  ADS  Google Scholar 

  16. Schultz, A. S. B. et al. NICMOS narrowband images of OMC-1. Astrophys. J. 511, 282–288 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Shuping, R. Y. & Morris, M. A new mid-infrared map of the BN/KL region using the Keck telescope. Astron. J. 128, 363–374 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Lucas, P. W. et al. High-resolution imaging polarimetry of HL Tau and magnetic field structure. Mon. Not. R. Astron. Soc. 352, 1347–1364 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Hough, J. H. et al. Infrared polarization in OMC-1—discovery of a molecular hydrogen reflection nebula. Mon. Not. R. Astron. Soc. 222, 629–644 (1986)

    Article  ADS  CAS  Google Scholar 

  20. Cohen, R. J., Rowland, P. R. & Blair, M. M. The source of bipolar outflow in Cepheus A. Mon. Not. R. Astron. Soc. 210, 425–438 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Tamura, M. et al. Infrared polarimetry of dark clouds—III. The relationship between the magnetic field and star formation in the NGC 1333 region. Mon. Not. R. Astron. Soc 231, 445–453 (1988)

    Article  ADS  Google Scholar 

  22. Matsumoto, T. & Tomisaka, K. Directions of outflows, disks, magnetic fields, and rotation of young stellar objects in collapsing molecular cloud cores. Astrophys. J. 616, 266–282 (2004)

    Article  ADS  Google Scholar 

  23. Wolfire, M. & Cassinelli, J. Conditions for the formation of massive stars. Astrophys. J. 319, 850–867 (1987)

    Article  ADS  CAS  Google Scholar 

  24. Yorke, H. W. & Sonnhalter, C. On the formation of massive stars. Astrophys. J. 569, 846–862 (2002)

    Article  ADS  Google Scholar 

  25. Krumholz, M. R., McKee, C. F. & Klein, R. I. How protostellar outflows help massive stars form. Astrophys. J. 618, L33–L36 (2005)

    Article  ADS  Google Scholar 

  26. Blum, R. D. et al. Accretion signatures from massive young stellar objects. Astrophys. J. 617, 1167–1176 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Tamura, M. et al. Coronagraph imager with adaptive optics (CIAO): description and first results. Proc. SPIE 4008, 1153–1161 (2000)

    Article  ADS  Google Scholar 

  28. Tamura, M. et al. Near-infrared polarimeter for the Subaru telescope. Proc. SPIE 4843, 190–195 (2003)

    Article  ADS  Google Scholar 

Download references


This paper is based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This work is supported by a Grant-in-Aid from MEXT, Japan, and NSFC of China. Author Contributions M.T., M.F., H.S. and M.I. collected the data. P.L. and M.F. did the modelling. M.T., J.H., P.L. and J.Y. contributed to the scientific discussion. Z.J. conducted data reduction and wrote the paper with help from all co-authors.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhibo Jiang.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Tamura, M., Fukagawa, M. et al. A circumstellar disk associated with a massive protostellar object. Nature 437, 112–115 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing