Direct observation of steps in rotation of the bacterial flagellar motor

Abstract

The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel many species of swimming bacteria1,2. The rotor is a set of rings up to 45 nm in diameter in the cytoplasmic membrane3; the stator contains about ten torque-generating units anchored to the cell wall at the perimeter of the rotor4,5. The free-energy source for the motor is an inward-directed electrochemical gradient of ions across the cytoplasmic membrane, the protonmotive force or sodium-motive force for H+-driven and Na+-driven motors, respectively. Here we demonstrate a stepping motion of a Na+-driven chimaeric flagellar motor in Escherichia coli6 at low sodium-motive force and with controlled expression of a small number of torque-generating units. We observe 26 steps per revolution, which is consistent with the periodicity of the ring of FliG protein, the proposed site of torque generation on the rotor7,8. Backwards steps despite the absence of the flagellar switching protein CheY indicate a small change in free energy per step, similar to that of a single ion transit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Rotation measurements of chimaeric Na+-driven flagellar motors in E. coli.
Figure 2: Stepping rotation.
Figure 3: Analysis of step size and periodicity.
Figure 4: Summary of step analysis.

References

  1. 1

    Berry, R. M. & Armitage, J. P. The bacterial flagella motor. Adv. Microb. Physiol. 41, 291–337 (1999)

    CAS  Article  Google Scholar 

  2. 2

    Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Thomas, D. R., Morgan, D. G. & DeRosier, D. J. Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc. Natl Acad. Sci. USA 96, 10134–10139 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Blair, D. F. & Berg, H. C. Restoration of torque in defective flagellar motors. Science 242, 1678–1681 (1988)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Berry, R. M., Turner, L. & Berg, H. C. Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys. J. 69, 280–286 (1995)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Asai, Y., Yakushi, T., Kawagishi, I. & Homma, M. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J. Mol. Biol. 327, 453–463 (2003)

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Suzuki, H., Yonekura, K. & Namba, K. Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J. Mol. Biol. 337, 105–113 (2004)

    CAS  Article  Google Scholar 

  8. 8

    Lloyd, S. A. & Blair, D. F. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol. 266, 733–744 (1997)

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Yasuda, R., Noji, H., Kinosita, K. Jr & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93, 1117–1124 (1998)

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Diez, M. et al. Proton-powered subunit rotation in single membrane-bound FOF1-ATP synthase. Nature Struct. Mol. Biol. 11, 135–141 (2004)

    CAS  Article  Google Scholar 

  13. 13

    Berg, H. C. in Cell Motility Vol. A (eds Goldman, R., Pollard, T. & Rosenbaum, J.) 47–56 (Cold Spring Harbor Press, New York, 1976)

    Google Scholar 

  14. 14

    Berg, H. C. & Turner, L. Torque generated by the flagellar motor of Escherichia coli. Biophys. J. 65, 2201–2216 (1993)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sowa, Y., Hotta, H., Homma, M. & Ishijima, A. Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 327, 1043–1051 (2003)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  17. 17

    Yorimitsu, T. & Homma, M. Na+-driven flagellar motor of Vibrio. Biochim. Biophys. Acta 1505, 82–93 (2001)

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  19. 19

    Liu, J. Z., Dapice, M. & Khan, S. Ion selectivity of the Vibrio alginolyticus flagellar motor. J. Bacteriol. 172, 5236–5244 (1990)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Fung, D. C. & Berg, H. C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809–812 (1995)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. 21

    Armitage, J. P. & Evans, M. C. Control of the protonmotive force in Rhodopseudomonas sphaeroides in the light and dark and its effect on the initiation of flagellar rotation. Biochim. Biophys. Acta 806, 42–55 (1985)

    CAS  Article  Google Scholar 

  22. 22

    Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K. & Block, S. M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Samatey, F. A. et al. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431, 1062–1068 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. 24

    Samuel, A. D. & Berg, H. C. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71, 918–923 (1996)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Meister, M., Lowe, G. & Berg, H. C. The proton flux through the bacterial flagellar motor. Cell 49, 643–650 (1987)

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Gabel, C. V. & Berg, H. C. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc. Natl Acad. Sci. USA 100, 8748–8751 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. 27

    Scharf, B. E., Fahrner, K. A., Turner, L. & Berg, H. C. Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 95, 201–206 (1998)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kuwajima, G. Construction of a minimum-size functional flagellin of Escherichia coli. J. Bacteriol. 170, 3305–3309 (1988)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Block, S. M., Blair, D. F. & Berg, H. C. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514–518 (1989)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Berg and K. Fahrner for the gift of strain HCB1271. The research of R.B., M.L. and A.R. was supported by combined UK research councils through an Interdisciplinary Research Collaboration in Bionanotechnology, that of A.I., M.H. and T.Y. by Grants-in-Aid from the Ministry of Education, Science, Sports, Culture and Technology of Japan, that of M.H. and T.Y. by Soft Nano-Machine Project of JST, and that of Y.S. by JSPS Research Fellowships for Young Scientists. Author Contributions BFP experiments were performed by Y.S. and A.R., fluorescence experiments by A.R. and M.L., experimental design was by R.B., A.I., A.R. and Y.S., data analysis by R.B., Y.S. and A.R., and strain construction by Y.S., T.Y. and M.H. Y.S. and A.R. contributed equally to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard M. Berry.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Effect of Na+ concentration on stator number, and initial stator number estimates for step experiments. (DOC 1175 kb)

Supplementary Figure 2

Further examples of stepping rotation. (DOC 1831 kb)

Supplementary Video 1

A 200 nm fluorescent bead rotating at ˜2 Hz, slowed down 40 times. Stepping rotation is visible. (MPG 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sowa, Y., Rowe, A., Leake, M. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–919 (2005). https://doi.org/10.1038/nature04003

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing