Apolipoprotein-mediated pathways of lipid antigen presentation


Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells1. Because CD1 molecules survey endocytic compartments2, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs3. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Distribution and presentation of lipid antigens in serum, and dependence on apoE.
Figure 2: ApoE binds lipid antigens and specifically enhances CD1-dependent T-cell responses.
Figure 3: Receptor-mediated uptake of apoE-bound lipid antigens.
Figure 4: Directed delivery of lipids to endosomal compartments by apoE.


  1. 1

    Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004)

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Sugita, M., Cernadas, M. & Brenner, M. B. New insights into pathways for CD1-mediated antigen presentation. Curr. Opin. Immunol. 16, 90–95 (2004)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Mahley, R. W., Weisgraber, K. H. & Farese, R. V. Jr in Williams Textbook of Endocrinology 10th edn (eds Larsen, P. R., Kronenberg, H. M., Melmed, S. & Polonsky, K. S.) 1642–1664 (Elsevier, Philadelphia, 2003)

    Google Scholar 

  4. 4

    Prigozy, T. I. et al. Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664–667 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  5. 5

    Krul, E. S., Tikkanen, M. J., Cole, T. G., Davie, J. M. & Schonfeld, G. Roles of apolipoproteins B and E in the cellular binding of very low density lipoproteins. J. Clin. Invest. 75, 361–369 (1985)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Sacks, F. M. & Krukonis, G. P. The influence of apolipoprotein E on the interactions between normal human very low density lipoproteins and U937 human macrophages: heterogeneity among persons. Vasc. Med. 1, 9–18 (1996)

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Tomiyasu, K., Walsh, B. W., Ikewaki, K., Judge, H. & Sacks, F. M. Differential metabolism of human VLDL according to content of ApoE and ApoC-III. Arterioscler. Thromb. Vasc. Biol. 21, 1494–1500 (2001)

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Major, A. S. et al. Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24, 2351–2357 (2004)

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Rebbaa, A. & Portoukalian, J. Distribution of exogenously added gangliosides in serum proteins depends on the relative affinity of albumin and lipoproteins. J. Lipid Res. 36, 564–572 (1995)

    CAS  PubMed  Google Scholar 

  11. 11

    Matsunaga, I. et al. Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J. Exp. Med. 200, 1559–1569 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Chaussabel, D. et al. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102, 672–681 (2003)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Le Naour, F. et al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276, 17920–17931 (2001)

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Heeren, J. & Beisiegel, U. Intracellular metabolism of triglyceride-rich lipoproteins. Curr. Opin. Lipidol. 12, 255–260 (2001)

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Lanzavecchia, A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu. Rev. Immunol. 8, 773–793 (1990)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Mahley, R. W. & Rall, S. C. Jr Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537 (2000)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001)

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630 (1988)

    ADS  CAS  Article  PubMed  Google Scholar 

  19. 19

    Beisiegel, U., Weber, W., Ihrke, G., Herz, J. & Stanley, K. K. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341, 162–164 (1989)

    ADS  CAS  Article  PubMed  Google Scholar 

  20. 20

    Barak, L. S. & Webb, W. W. Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J. Cell Biol. 90, 595–604 (1981)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Beatty, W. L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000)

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N.Y. Acad. Sci. 947, 214–222 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. 23

    Fazekas, F. et al. Apolipoprotein E epsilon 4 is associated with rapid progression of multiple sclerosis. Neurology 57, 853–857 (2001)

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999)

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nature Immunol. 4, 1230–1237 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Porcelli, S., Morita, C. T. & Brenner, M. B. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360, 593–597 (1992)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. 27

    Moody, D. B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nature Immunol. 3, 435–442 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Innis-Whitehouse, W., Li, X., Brown, W. V. & Le, N. A. An efficient chromatographic system for lipoprotein fractionation using whole plasma. J. Lipid Res. 39, 679–690 (1998)

    CAS  PubMed  Google Scholar 

  29. 29

    Brown, M. S. & Goldstein, J. L. A receptor mediated pathway fpr cholesterol homeostasis. Science 232, 34–47 (1986)

    ADS  CAS  Article  Google Scholar 

Download references


We thank B. Asfaw, J. Heeren and S. Blacklow for helpful discussion, and D. Chausabel for providing additional microarray data. P.vdE., S.G., L.L., M. Brigl, E.L., J.G., C.C.D. and M. Brenner are funded by the NIH. L.L. is the recipient of a Howard Hughes Gilliam fellowship. Funding for T.-Y.C. and D.B.M. was from the Pew Foundation Scholars in the Biomedical Sciences, the Cancer Research Institute and the NIH. Funding for G.S.B., a Lister-Jenner Research Fellow, and for P.A.I. was from the Medical Research Council and the Wellcome Trust. S.C.K. was funded by the Boston Area Diabetes Research Center (BADERC).

Author information



Corresponding author

Correspondence to Michael B. Brenner.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the following: additional calculations, Supplementary Figure Legends, Supplementary Figures S1-S4 and additional references. (PDF 50 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elzen, P., Garg, S., León, L. et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906–910 (2005). https://doi.org/10.1038/nature04001

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing