Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental investigation of geologically produced antineutrinos with KamLAND


The detection of electron antineutrinos produced by natural radioactivity in the Earth could yield important geophysical information. The Kamioka liquid scintillator antineutrino detector (KamLAND) has the sensitivity to detect electron antineutrinos produced by the decay of 238U and 232Th within the Earth. Earth composition models suggest that the radiogenic power from these isotope decays is 16 TW, approximately half of the total measured heat dissipation rate from the Earth. Here we present results from a search for geoneutrinos with KamLAND. Assuming a Th/U mass concentration ratio of 3.9, the 90 per cent confidence interval for the total number of geoneutrinos detected is 4.5 to 54.2. This result is consistent with the central value of 19 predicted by geophysical models. Although our present data have limited statistical power, they nevertheless provide by direct means an upper limit (60 TW) for the radiogenic power of U and Th in the Earth, a quantity that is currently poorly constrained.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The expected 238U, 232Th and 40K decay chain electron antineutrino energy distributions.
Figure 2: The expected total 238U and 232Th geoneutrino flux within a given distance from KamLAND22.
Figure 3: ν̄ e energy spectra in KamLAND.
Figure 4: Confidence intervals for the number of geoneutrinos detected.
Figure 5


  1. Eguchi, K. et al. First results from KamLAND: Evidence for reactor antineutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003)

    ADS  CAS  Article  Google Scholar 

  2. Araki, T. et al. Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005)

    ADS  CAS  Article  Google Scholar 

  3. Eder, G. Terrestrial neutrinos. Nucl. Phys. 78, 657–662 (1966)

    CAS  Article  Google Scholar 

  4. Marx, G. Geophysics by neutrinos. Czech. J. Phys. B 19, 1471–1479 (1969)

    ADS  Article  Google Scholar 

  5. Avilez, C., Marx, G. & Fuentes, B. Earth as a source of antineutrinos. Phys. Rev. D 23, 1116–1117 (1981)

    ADS  CAS  Article  Google Scholar 

  6. Krauss, L. M., Glashow, S. L. & Schramm, D. N. Antineutrino astronomy and geophysics. Nature 310, 191–198 (1984)

    ADS  CAS  Article  Google Scholar 

  7. Kobayashi, M. & Fukao, Y. The Earth as an antineutrino star. Geophys. Res. Lett. 18, 633–636 (1991)

    ADS  Article  Google Scholar 

  8. Raghavan, R. S. et al. Measuring the global radioactivity in the Earth by multidetector antineutrino spectroscopy. Phys. Rev. Lett. 80, 635–638 (1998)

    ADS  CAS  Article  Google Scholar 

  9. Rothschild, C. G., Chen, M. C. & Calaprice, F. P. Antineutrino geophysics with liquid scintillator detectors. Geophys. Res. Lett. 25, 1083–1086 (1998)

    ADS  CAS  Article  Google Scholar 

  10. Mantovani, F., Carmignani, L., Fiorentini, G. & Lissia, M. Antineutrinos from Earth: A reference model and its uncertainties. Phys. Rev. D 69, 013001 (2004)

    ADS  Article  Google Scholar 

  11. Pollack, H. N., Hurter, S. J. & Johnson, J. R. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)

    ADS  Article  Google Scholar 

  12. Hofmeister, A. M. & Criss, R. E. Earth's heat flux revised and linked to chemistry. Tectonophysics 395, 159–177 (2005)

    ADS  CAS  Article  Google Scholar 

  13. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  14. Jackson, M. J. & Pollack, H. N. On the sensitivity of parameterized convection to the rate of decay of internal heat sources. J. Geophys. Res. 89, 10103–10108 (1984)

    ADS  CAS  Article  Google Scholar 

  15. Richter, F. M. Regionalized models for the thermal evolution of the Earth. Earth Planet. Sci. Lett. 68, 471–484 (1984)

    ADS  CAS  Article  Google Scholar 

  16. Firestone, R. B. Table of Isotopes 8th edn (John Wiley, New York, 1996)

    Google Scholar 

  17. Behrens, H. & Jänecke, J. Landolt-Börnstein - Group I, Elementary Particles, Nuclei and Atoms Vol. 4 (Springer, Berlin, 1969)

    Google Scholar 

  18. McKeown, R. D. & Vogel, P. Neutrino masses and oscillations: triumphs and challenges. Phys. Rep. 394, 315–356 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Ahmed, S. N. et al. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys. Rev. Lett. 92, 181301 (2004)

    ADS  CAS  Article  Google Scholar 

  20. Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978)

    ADS  CAS  Article  Google Scholar 

  21. Vogel, P. & Beacom, J. F. Angular distribution of neutron inverse beta decay, ν̄e + pe+ + n. Phys. Rev. D 60, 053003 (1999)

    ADS  Article  Google Scholar 

  22. Enomoto, S. Neutrino Geophysics and Observation of Geo-neutrinos at KamLAND. Thesis, Tohoku Univ. (2005); available at

    Google Scholar 

  23. JENDL Japanese Evaluated Nuclear Data Library. (2004).

  24. Apostolakis, J. Geant—Detector description and simulation tool. (2003).

  25. Walton, R. B., Clement, J. D. & Borlei, F. Interaction of neutrons with oxygen and a study of the C13(α,n)O16 reaction. Phys. Rev. 107, 1065–1075 (1957)

    ADS  CAS  Article  Google Scholar 

  26. Kerr, G. W., Morris, J. M. & Risser, J. R. Energy levels of 17O from 13C(α,α0)13C and 13C(α,n)16O. Nucl. Phys. A 110, 637–656 (1968)

    ADS  CAS  Article  Google Scholar 

  27. Kopeikin, V. I. et al. Inverse beta decay in a nonequilibrium antineutrino flux from a nuclear reactor. Phys. Atom. Nuclei 64, 849–854 (2001)

    ADS  CAS  Article  Google Scholar 

  28. Rocholl, A. & Jochum, K. P. Th, U and other trace elements in carbonaceous chondrites: Implications for the terrestrial and solar-system Th/U ratios. Earth Planet. Sci. Lett. 117, 265–278 (1993)

    ADS  CAS  Article  Google Scholar 

  29. Tolich, N. Experimental Study of Terrestrial Electron Anti-neutrinos with KamLAND Thesis, Stanford Univ. (2005); available at

    Google Scholar 

  30. KamLAND collaboration. Data release accompanying the 2nd KamLAND reactor result. (2005).

Download references


We thank E. Ohtani and N. Sleep for advice and guidance. The KamLAND experiment is supported by the COE program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology, and by the United States Department of Energy. The reactor data were provided courtesy of the following associations in Japan: Hokkaido, Tohoku, Tokyo, Hokuriku, Chubu, Kansai, Chugoku, Shikoku and Kyushu Electric Power Companies, Japan Atomic Power Co. and Japan Nuclear Cycle Development Institute. Kamioka Mining and Smelting Company provided services for activity at the experimental site.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to S. Enomoto or N. Tolich.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Araki, T., Enomoto, S., Furuno, K. et al. Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436, 499–503 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing