Subjects

Abstract

The detection of electron antineutrinos produced by natural radioactivity in the Earth could yield important geophysical information. The Kamioka liquid scintillator antineutrino detector (KamLAND) has the sensitivity to detect electron antineutrinos produced by the decay of 238U and 232Th within the Earth. Earth composition models suggest that the radiogenic power from these isotope decays is 16 TW, approximately half of the total measured heat dissipation rate from the Earth. Here we present results from a search for geoneutrinos with KamLAND. Assuming a Th/U mass concentration ratio of 3.9, the 90 per cent confidence interval for the total number of geoneutrinos detected is 4.5 to 54.2. This result is consistent with the central value of 19 predicted by geophysical models. Although our present data have limited statistical power, they nevertheless provide by direct means an upper limit (60 TW) for the radiogenic power of U and Th in the Earth, a quantity that is currently poorly constrained.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. First results from KamLAND: Evidence for reactor antineutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003)

  2. 2.

    et al. Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005)

  3. 3.

    Terrestrial neutrinos. Nucl. Phys. 78, 657–662 (1966)

  4. 4.

    Geophysics by neutrinos. Czech. J. Phys. B 19, 1471–1479 (1969)

  5. 5.

    , & Earth as a source of antineutrinos. Phys. Rev. D 23, 1116–1117 (1981)

  6. 6.

    , & Antineutrino astronomy and geophysics. Nature 310, 191–198 (1984)

  7. 7.

    & The Earth as an antineutrino star. Geophys. Res. Lett. 18, 633–636 (1991)

  8. 8.

    et al. Measuring the global radioactivity in the Earth by multidetector antineutrino spectroscopy. Phys. Rev. Lett. 80, 635–638 (1998)

  9. 9.

    , & Antineutrino geophysics with liquid scintillator detectors. Geophys. Res. Lett. 25, 1083–1086 (1998)

  10. 10.

    , , & Antineutrinos from Earth: A reference model and its uncertainties. Phys. Rev. D 69, 013001 (2004)

  11. 11.

    , & Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)

  12. 12.

    & Earth's heat flux revised and linked to chemistry. Tectonophysics 395, 159–177 (2005)

  13. 13.

    & The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

  14. 14.

    & On the sensitivity of parameterized convection to the rate of decay of internal heat sources. J. Geophys. Res. 89, 10103–10108 (1984)

  15. 15.

    Regionalized models for the thermal evolution of the Earth. Earth Planet. Sci. Lett. 68, 471–484 (1984)

  16. 16.

    Table of Isotopes 8th edn (John Wiley, New York, 1996)

  17. 17.

    & Landolt-Börnstein - Group I, Elementary Particles, Nuclei and Atoms Vol. 4 (Springer, Berlin, 1969)

  18. 18.

    & Neutrino masses and oscillations: triumphs and challenges. Phys. Rep. 394, 315–356 (2004)

  19. 19.

    et al. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys. Rev. Lett. 92, 181301 (2004)

  20. 20.

    Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978)

  21. 21.

    & Angular distribution of neutron inverse beta decay, ν̄e + pe+ + n. Phys. Rev. D 60, 053003 (1999)

  22. 22.

    Neutrino Geophysics and Observation of Geo-neutrinos at KamLAND. Thesis, Tohoku Univ. (2005); available at  

  23. 23.

    JENDL Japanese Evaluated Nuclear Data Library.   (2004).

  24. 24.

    Apostolakis, J. Geant—Detector description and simulation tool.   (2003).

  25. 25.

    , & Interaction of neutrons with oxygen and a study of the C13(α,n)O16 reaction. Phys. Rev. 107, 1065–1075 (1957)

  26. 26.

    , & Energy levels of 17O from 13C(α,α0)13C and 13C(α,n)16O. Nucl. Phys. A 110, 637–656 (1968)

  27. 27.

    et al. Inverse beta decay in a nonequilibrium antineutrino flux from a nuclear reactor. Phys. Atom. Nuclei 64, 849–854 (2001)

  28. 28.

    & Th, U and other trace elements in carbonaceous chondrites: Implications for the terrestrial and solar-system Th/U ratios. Earth Planet. Sci. Lett. 117, 265–278 (1993)

  29. 29.

    Experimental Study of Terrestrial Electron Anti-neutrinos with KamLAND Thesis, Stanford Univ. (2005); available at  

  30. 30.

    KamLAND collaboration. Data release accompanying the 2nd KamLAND reactor result.  (2005).

Download references

Acknowledgements

We thank E. Ohtani and N. Sleep for advice and guidance. The KamLAND experiment is supported by the COE program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology, and by the United States Department of Energy. The reactor data were provided courtesy of the following associations in Japan: Hokkaido, Tohoku, Tokyo, Hokuriku, Chubu, Kansai, Chugoku, Shikoku and Kyushu Electric Power Companies, Japan Atomic Power Co. and Japan Nuclear Cycle Development Institute. Kamioka Mining and Smelting Company provided services for activity at the experimental site.

Author information

Affiliations

  1. Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan

    • T. Araki
    • , S. Enomoto
    • , K. Furuno
    • , Y. Gando
    • , K. Ichimura
    • , H. Ikeda
    • , K. Inoue
    • , Y. Kishimoto
    • , M. Koga
    • , Y. Koseki
    • , T. Maeda
    • , T. Mitsui
    • , M. Motoki
    • , K. Nakajima
    • , H. Ogawa
    • , M. Ogawa
    • , K. Owada
    • , J.-S. Ricol
    • , I. Shimizu
    • , J. Shirai
    • , F. Suekane
    • , A. Suzuki
    • , K. Tada
    • , S. Takeuchi
    • , K. Tamae
    • , Y. Tsuda
    •  & H. Watanabe
  2. Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA

    • J. Busenitz
    • , T. Classen
    • , Z. Djurcic
    • , G. Keefer
    • , D. Leonard
    • , A. Piepke
    •  & E. Yakushev
  3. Physics Department, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • B. E. Berger
    • , Y. D. Chan
    • , M. P. Decowski
    • , D. A. Dwyer
    • , S. J. Freedman
    • , B. K. Fujikawa
    • , J. Goldman
    • , F. Gray
    • , K. M. Heeger
    • , L. Hsu
    • , K. T. Lesko
    • , K.-B. Luk
    • , H. Murayama
    • , T. O'Donnell
    • , A. W. P. Poon
    • , H. M. Steiner
    •  & L. A. Winslow
  4. W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA

    • C. Mauger
    • , R. D. McKeown
    •  & P. Vogel
  5. Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA

    • C. E. Lane
    •  & T. Miletic
  6. Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

    • G. Guillian
    • , J. G. Learned
    • , J. Maricic
    • , S. Matsuno
    •  & S. Pakvasa
  7. Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA

    • G. A. Horton-Smith
  8. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

    • S. Dazeley
    • , S. Hatakeyama
    • , A. Rojas
    •  & R. Svoboda
  9. Physics Department, University of New Mexico, Albuquerque, New Mexico 87131, USA

    • B. D. Dieterle
  10. Physics Department, Stanford University, Stanford, California 94305, USA

    • J. Detwiler
    • , G. Gratta
    • , K. Ishii
    • , N. Tolich
    •  & Y. Uchida
  11. Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

    • M. Batygov
    • , W. Bugg
    • , Y. Efremenko
    • , Y. Kamyshkov
    • , A. Kozlov
    •  & Y. Nakamura
  12. Physics Department, Duke University, Durham, North Carolina 27008, USA, and Physics Department, North Carolina State, Raleigh, North Carolina 27695, USA, and Physics Department, University of North Carolina, Chapel Hill, North Carolina 27599, USA

    • H. J. Karwowski
    • , D. M. Markoff
    • , K. Nakamura
    • , R. M. Rohm
    • , W. Tornow
    •  & R. Wendell
  13. Institute of High Energy Physics, Beijing 100039, China

    • M.-J. Chen
    •  & Y.-F. Wang
  14. CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France

    • F. Piquemal

Authors

  1. Search for T. Araki in:

  2. Search for S. Enomoto in:

  3. Search for K. Furuno in:

  4. Search for Y. Gando in:

  5. Search for K. Ichimura in:

  6. Search for H. Ikeda in:

  7. Search for K. Inoue in:

  8. Search for Y. Kishimoto in:

  9. Search for M. Koga in:

  10. Search for Y. Koseki in:

  11. Search for T. Maeda in:

  12. Search for T. Mitsui in:

  13. Search for M. Motoki in:

  14. Search for K. Nakajima in:

  15. Search for H. Ogawa in:

  16. Search for M. Ogawa in:

  17. Search for K. Owada in:

  18. Search for J.-S. Ricol in:

  19. Search for I. Shimizu in:

  20. Search for J. Shirai in:

  21. Search for F. Suekane in:

  22. Search for A. Suzuki in:

  23. Search for K. Tada in:

  24. Search for S. Takeuchi in:

  25. Search for K. Tamae in:

  26. Search for Y. Tsuda in:

  27. Search for H. Watanabe in:

  28. Search for J. Busenitz in:

  29. Search for T. Classen in:

  30. Search for Z. Djurcic in:

  31. Search for G. Keefer in:

  32. Search for D. Leonard in:

  33. Search for A. Piepke in:

  34. Search for E. Yakushev in:

  35. Search for B. E. Berger in:

  36. Search for Y. D. Chan in:

  37. Search for M. P. Decowski in:

  38. Search for D. A. Dwyer in:

  39. Search for S. J. Freedman in:

  40. Search for B. K. Fujikawa in:

  41. Search for J. Goldman in:

  42. Search for F. Gray in:

  43. Search for K. M. Heeger in:

  44. Search for L. Hsu in:

  45. Search for K. T. Lesko in:

  46. Search for K.-B. Luk in:

  47. Search for H. Murayama in:

  48. Search for T. O'Donnell in:

  49. Search for A. W. P. Poon in:

  50. Search for H. M. Steiner in:

  51. Search for L. A. Winslow in:

  52. Search for C. Mauger in:

  53. Search for R. D. McKeown in:

  54. Search for P. Vogel in:

  55. Search for C. E. Lane in:

  56. Search for T. Miletic in:

  57. Search for G. Guillian in:

  58. Search for J. G. Learned in:

  59. Search for J. Maricic in:

  60. Search for S. Matsuno in:

  61. Search for S. Pakvasa in:

  62. Search for G. A. Horton-Smith in:

  63. Search for S. Dazeley in:

  64. Search for S. Hatakeyama in:

  65. Search for A. Rojas in:

  66. Search for R. Svoboda in:

  67. Search for B. D. Dieterle in:

  68. Search for J. Detwiler in:

  69. Search for G. Gratta in:

  70. Search for K. Ishii in:

  71. Search for N. Tolich in:

  72. Search for Y. Uchida in:

  73. Search for M. Batygov in:

  74. Search for W. Bugg in:

  75. Search for Y. Efremenko in:

  76. Search for Y. Kamyshkov in:

  77. Search for A. Kozlov in:

  78. Search for Y. Nakamura in:

  79. Search for H. J. Karwowski in:

  80. Search for D. M. Markoff in:

  81. Search for K. Nakamura in:

  82. Search for R. M. Rohm in:

  83. Search for W. Tornow in:

  84. Search for R. Wendell in:

  85. Search for M.-J. Chen in:

  86. Search for Y.-F. Wang in:

  87. Search for F. Piquemal in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding authors

Correspondence to S. Enomoto or N. Tolich.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature03980

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.