Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth

Abstract

Fluids and melts liberated from subducting oceanic crust recycle lithophile elements back into the mantle wedge, facilitate melting and ultimately lead to prolific subduction-zone arc volcanism1,2. The nature and composition of the mobile phases generated in the subducting slab at high pressures have, however, remained largely unknown3,4,5,6,7. Here we report direct LA-ICPMS measurements of the composition of fluids and melts equilibrated with a basaltic eclogite at pressures equivalent to depths in the Earth of 120–180 km and temperatures of 700–1,200 °C. The resultant liquid/mineral partition coefficients constrain the recycling rates of key elements. The dichotomy of dehydration versus melting at 120 km depth is expressed through contrasting behaviour of many trace elements (U/Th, Sr, Ba, Be and the light rare-earth elements). At pressures equivalent to 180 km depth, however, a supercritical liquid with melt-like solubilities for the investigated trace elements is observed, even at low temperatures. This mobilizes most of the key trace elements (except the heavy rare-earth elements, Y and Sc) and thus limits fluid-phase transfer of geochemical signatures in subduction zones to pressures less than 6 GPa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental fluid–solid partition coefficients for average MORB.
Figure 2: Key trace element distribution coefficients characterizing the geochemical signature of the mobile phase during subduction processes.

Similar content being viewed by others

References

  1. Kushiro, K. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 165–181 (Special Publication No. 1, Geochemical Society, 1987)

    Google Scholar 

  2. Tatsumi, Y., Hamilton, D. L. & Nesbitt, R. W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res. 29, 293–309 (1986)

    Article  ADS  CAS  Google Scholar 

  3. Kelemen, P. B., Hanghj, K. & Greene, A. R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem. 3, 593–659 (2004)

    ADS  CAS  Google Scholar 

  4. Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1, doi:10.1029/1999GC000014 (1999)

  5. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Clasteren, P. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 276, 551–555 (1997)

    Article  CAS  Google Scholar 

  6. Morris, J. D., Leeman, W. P. & Tera, F. The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344, 31–36 (1990)

    Article  ADS  CAS  Google Scholar 

  7. Elliot, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997)

    Article  ADS  Google Scholar 

  8. Sigmarsson, O., Martin, H. & Knowles, J. Melting of a subducting oceanic crust from U-Th disequilibria in austral Andean lavas. Nature 394, 566–569 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Ryan, J. G., Morris, J., Tera, F., Leeman, W. P. & Tsvetkov, A. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science 270, 625–627 (1995)

    Article  ADS  Google Scholar 

  10. Morris, J. D. & Ryan, J. G. Subduction zone processes and implications for changing composition of the upper and lower mantle. Treatise Geochem. 2, 451–470 (2004)

    ADS  CAS  Google Scholar 

  11. Tatsumi, Y. & Eggins, S. Subduction Zone Magmatism (Frontiers in Earth Sciences, Blackwell Science, Cambridge, Massachusetts, 1995)

    Google Scholar 

  12. Kincaid, C. & Sachs, I. S. Thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res. 102, 12295–12315 (1997)

    Article  ADS  Google Scholar 

  13. Turner, S. & Hawkesworth, C. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389, 568–573 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Schmidt, M. W., Vielzeuf, D. & Auzanneau, E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228, 65–84 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Stalder, R., Ulmer, P., Thompson, A. B. & Günter, D. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib. Mineral. Petrol. 140, 607–618 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Shen, A. H. & Keppler, H. Direct observation of complete miscibility in the albite-H2O system. Nature 385, 710–712 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Kushiro, I. & Hirose, K. Experimental determination of composition of melt formed by equilibrium partial melting of peridotite at high pressures using aggregates of diamond grains. Proc. Jpn. Acad. 68, 63–68 (1992)

    Article  CAS  Google Scholar 

  19. Schmidt, M. W. & Ulmer, P. A rocking multianvil: Elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochim. Cosmochim. Acta 68, 1889–1899 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A. B. Experimental determination of phase relations and second critical endpoint in K-free eclogite-H2O at 4–6 GPa and 700–1400 °C. Earth Planet. Sci. Lett.(in the press)

  21. Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 59, 3331–3350 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Stalder, R., Foley, S. F., Brey, G. P. & Horn, I. Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim. Cosmochim. Acta 62, 1781–1801 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Green, T. H., Blundy, J. D., Adam, J. & Yaxley, G. M. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53, 165–187 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Klemme, S., Blundy, J. D. & Wood, B. J. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta 66, 3109–3123 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Brenan, J. M., Ryerson, J. F. & Shaw, H. F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models. Geochim. Cosmochim. Acta 62, 3337–3347 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Martin, H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–429 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Fumagalli, P. & Poli, S. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J. Petrol. 46, 555–578 (2005)

    Article  CAS  Google Scholar 

  29. Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411, 293–296 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Holloway, J. R. & Domanik, K. J. Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China. Lithos 52, 51–77 (2000)

    Article  ADS  Google Scholar 

  31. Yaxley, G. M. & Green, D. H. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet. Sci. Lett. 128, 313–325 (1994)

    Article  ADS  CAS  Google Scholar 

  32. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A. B. A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments. Am. Mineral. 89, 1078–1086 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Kessel.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Tables S1–S6

These six Supplementary Tables provide the concentrations of all phases (garnet, clinopyroxene, liquid) in each experiment, as well as their abundance. Also provided are the bulk partition coefficients of each element and its mobility. (XLS 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessel, R., Schmidt, M., Ulmer, P. et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005). https://doi.org/10.1038/nature03971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03971

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing