Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general strategy for nanocrystal synthesis

Abstract

New strategies for materials fabrication are of fundamental importance in the advancement of science and technology1,2,3,4,5,6,7,8,9,10,11,12. Organometallic13,14 and other organic solution phase15,16,17 synthetic routes have enabled the synthesis of functional inorganic quantum dots or nanocrystals. These nanomaterials form the building blocks for new bottom-up approaches to materials assembly for a range of uses; such materials also receive attention because of their intrinsic size-dependent properties and resulting applications18,19,20,21. Here we report a unified approach to the synthesis of a large variety of nanocrystals with different chemistries and properties and with low dispersity; these include noble metal, magnetic/dielectric, semiconducting, rare-earth fluorescent, biomedical, organic optoelectronic semiconducting and conducting polymer nanoparticles. This strategy is based on a general phase transfer and separation mechanism occurring at the interfaces of the liquid, solid and solution phases present during the synthesis. We believe our methodology provides a simple and convenient route to a variety of building blocks for assembling materials with novel structure and function in nanotechnology13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: TEM images of nanocrystals.
Figure 2: XRD patterns of nanocrystals.
Figure 3
Figure 4: Cyclohexane solutions of nanoparticles with a typical concentration of 2%.

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    ADS  CAS  Article  Google Scholar 

  2. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  CAS  Article  Google Scholar 

  3. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

    ADS  CAS  Article  Google Scholar 

  4. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of Tungsten disulfide. Nature 360, 444–446 (1992)

    ADS  CAS  Article  Google Scholar 

  6. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. & Lieber, C. M. Indium phosphide nanowire as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

    ADS  CAS  Article  Google Scholar 

  8. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    CAS  Article  Google Scholar 

  11. Huo, Q. S. et al. Generalized syntheses of periodic surfactant inorganic composite-materials. Nature 368, 317–321 (1994)

    ADS  CAS  Article  Google Scholar 

  12. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998)

    ADS  CAS  Article  Google Scholar 

  13. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    CAS  Article  Google Scholar 

  14. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Sun, S. H., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self organization of CdSe nanocrystallites into 3-dimentional quantum-dot superlattices. Science 270, 1335–1338 (1995)

    ADS  CAS  Article  Google Scholar 

  17. Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    ADS  CAS  Google Scholar 

  18. Jovin, T. M. Quantum dots finally come of age. Nature Biotechnol. 21, 32–33 (2003)

    CAS  Article  Google Scholar 

  19. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Tessler, N., Medvedev, V., Kazes, M., Kan, S. H. & Banin, U. Efficient near-infrared polymer nanocrystat light-emitting diodes. Science 295, 1506–1508 (2002)

    ADS  Article  Google Scholar 

  21. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Li, Y. D. et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 123, 9904–9905 (2001)

    CAS  Article  Google Scholar 

  23. Li, Y. D., Li, X. L., He, R. R., Zhu, J. & Deng, Z. X. Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411–1416 (2002)

    CAS  Article  Google Scholar 

  24. Wang, X. & Li, Y. D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002)

    CAS  Article  Google Scholar 

  25. Wang, X. & Li, Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Edn Engl. 41, 4790–4793 (2002)

    CAS  Article  Google Scholar 

  26. Peng, Q., Dong, Y. J. & Li, Y. D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Edn Engl. 42, 3027–3030 (2003)

    CAS  Article  Google Scholar 

  27. Wang, X. & Li, Y. D. Fullerene-like rare-earth nanoparticles. Angew. Chem. Int. Edn Engl. 42, 3497–3500 (2003)

    CAS  Article  Google Scholar 

  28. Wang, X., Zhuang, J., Chen, J., Zhou, K. B. & Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem. Int. Edn Engl. 43, 2017–2020 (2004)

    CAS  Article  Google Scholar 

  29. Sun, X. M. & Li, Y. D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Edn Engl. 43, 3827–3831 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC, the Foundation for the Author of National Excellent Doctoral Dissertation of China and the State Key Project of Fundamental Research for Nanomaterials and Nanostructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Li.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the following sections: Part I, particle size distributions analysis of the nanocrystals; Part II, EDS analysis of the nanocrystals; Part III, detailed experimental conditions for distinct class of nanocrystals with certain composition and sizes; Part IV, nanocrystals obtained by employing different solvents instead of ethanol; Part V, magnetic characterization of MFe2O4 nanocrystals, Uv-vis spectra of Ag nanocrystals with different sizes, Visible-to-naked-eyes green upconversion emissions from NaYF4 nanocrystals; Part VI, synthesis and characterization of New-type Nanocrystals. (DOC 3070 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Zhuang, J., Peng, Q. et al. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005). https://doi.org/10.1038/nature03968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03968

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing