Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways


Cyclic adenosine 3′, 5′-monophosphate (cAMP) is a ubiquitous mediator of intracellular signalling events. It acts principally through stimulation of cAMP-dependent protein kinases (PKAs)1,2 but also activates certain ion channels and guanine nucleotide exchange factors (Epacs)3. Metabolism of cAMP is catalysed by phosphodiesterases (PDEs)4,5. Here we identify a cAMP-responsive signalling complex maintained by the muscle-specific A-kinase anchoring protein (mAKAP) that includes PKA, PDE4D3 and Epac1. These intermolecular interactions facilitate the dissemination of distinct cAMP signals through each effector protein. Anchored PKA stimulates PDE4D3 to reduce local cAMP concentrations, whereas an mAKAP-associated ERK5 kinase module suppresses PDE4D3. PDE4D3 also functions as an adaptor protein that recruits Epac1, an exchange factor for the small GTPase Rap1, to enable cAMP-dependent attenuation of ERK5. Pharmacological and molecular manipulations of the mAKAP complex show that anchored ERK5 can induce cardiomyocyte hypertrophy. Thus, two coupled cAMP-dependent feedback loops are coordinated within the context of the mAKAP complex, suggesting that local control of cAMP signalling by AKAP proteins is more intricate than previously appreciated.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bidirectional control of the mAKAP-associated PDE4D3 activity.
Figure 2: Epac1 suppresses mAKAP-associated ERK5 activity.
Figure 3: The mAKAP complex facilitates cytokine-induced cardiac hypertrophy.


  1. Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3765 (1968)

    CAS  PubMed  Google Scholar 

  2. Su, Y. et al. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding proteins. Science 269, 807–813 (1995)

    ADS  CAS  Article  Google Scholar 

  3. Bos, J. L. Epac: a new cAMP target and new avenues in cAMP research. Nature Rev. Mol. Cell Biol. 4, 733–738 (2003)

    CAS  Article  Google Scholar 

  4. Beavo, J. A. & Brunton, L. L. Cyclic nucleotide research—still expanding after half a century. Nature Rev. Mol. Cell Biol. 3, 710–718 (2002)

    CAS  Article  Google Scholar 

  5. Houslay, M. D. & Adams, D. R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 370, 1–18 (2003)

    CAS  Article  Google Scholar 

  6. Perry, S. J. et al. Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science 298, 834–836 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Verde, I. et al. Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J. Biol. Chem. 276, 11189–11198 (2001)

    CAS  Article  Google Scholar 

  8. Dodge, K. L. et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signalling module. EMBO J. 20, 1921–1930 (2001)

    CAS  Article  Google Scholar 

  9. Carlisle Michel, J. J. et al. PKA phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem. J. 381, 587–592 (2004)

    CAS  Article  Google Scholar 

  10. Sette, C. & Conti, M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. J. Biol. Chem. 271, 16526–16534 (1996)

    CAS  Article  Google Scholar 

  11. Wong, W. & Scott, J. D. AKAP signalling complexes: Focal points in space and time. Nature Rev. Mol. Cell Biol. 5, 959–971 (2004)

    CAS  Article  Google Scholar 

  12. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–15002 (2001)

    ADS  CAS  Article  Google Scholar 

  13. Hoffmann, R., Baillie, G. S., MacKenzie, S. J., Yarwood, S. J. & Houslay, M. D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893–903 (1999)

    CAS  Article  Google Scholar 

  14. Zhou, G., Bao, Z. Q. & Dixon, J. E. Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12665–12669 (1995)

    CAS  Article  Google Scholar 

  15. English, J. M., Vanderbilt, C. A., Xu, S., Marcus, S. & Cobb, M. H. Isolation of MEK5 and differential expression of alternatively spliced forms. J. Biol. Chem. 270, 28897–28902 (1995)

    CAS  Article  Google Scholar 

  16. Kapiloff, M. S., Schillace, R. V., Westphal, A. M. & Scott, J. D. mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J. Cell Sci. 112, 2725–2736 (1999)

    CAS  PubMed  Google Scholar 

  17. MacKenzie, S. J., Baillie, G. S., McPhee, I., Bolger, G. B. & Houslay, M. D. ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J. Biol. Chem. 275, 16609–16617 (2000)

    CAS  Article  Google Scholar 

  18. Pearson, G. W. & Cobb, M. H. Cell condition-dependent regulation of ERK5 by cAMP. J. Biol. Chem. 277, 48094–48098 (2002)

    CAS  Article  Google Scholar 

  19. Cook, S. J. & McCormick, F. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262, 1069–1072 (1993)

    ADS  CAS  Article  Google Scholar 

  20. Vaillancourt, R. R., Gardner, A. M. & Johnson, G. L. B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol. Cell. Biol. 14, 6522–6530 (1994)

    CAS  Article  Google Scholar 

  21. de Rooij, J. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998)

    ADS  CAS  Article  Google Scholar 

  22. Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275–2279 (1998)

    ADS  CAS  Article  Google Scholar 

  23. Enserink, J. M. et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nature Cell Biol. 4, 901–906 (2002)

    CAS  Article  Google Scholar 

  24. Rubinfeld, B. et al. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell 65, 1033–1042 (1991)

    CAS  Article  Google Scholar 

  25. Nicol, R. L. et al. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 20, 2757–2767 (2001)

    CAS  Article  Google Scholar 

  26. Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711–1715 (2002)

    ADS  CAS  Article  Google Scholar 

  27. Mongillo, M. et al. Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ. Res. 95, 67–75 (2004)

    CAS  Article  Google Scholar 

  28. Laroche-Joubert, N., Marsy, S., Michelet, S., Imbert-Teboul, M. & Doucet, A. Protein kinase A-independent activation of ERK and H,K-ATPase by cAMP in native kidney cells: role of Epac I. J. Biol. Chem. 277, 18598–18604 (2002)

    CAS  Article  Google Scholar 

  29. Beavo, J. A., Bechtel, P. J. & Krebs, E. G. Preparation of homogeneous cyclic AMP-dependent protein kinase(s) and its subunits from rabbit skeletal muscle. Methods Enzymol. 38, 299–308 (1974)

    CAS  Article  Google Scholar 

  30. Kodama, H. et al. Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 279, H1635–H1644 (2000)

    CAS  Article  Google Scholar 

  31. Zhang, J., Hupfeld, C. J., Taylor, S. S., Olefsky, J. M. & Tsien, R. Y. Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes. Nature doi:10.1038/nature04140 (this issue)

Download references


This work was supported by grants from the National Institutes of Health (to J.D.S. and M.S.K.) and the American Heart Association (to K.L.D.-K.). The authors wish to thank N. Mayer, D. Bleckinger and R. Mouton for technical assistance, and R. Tsien, M. Houslay, J. E. Dixon, J. L. Bos and P. Stork for reagents.

Author information

Authors and Affiliations


Corresponding author

Correspondence to John D. Scott.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Figure Legends and the Supplementary Video Legends. (DOC 32 kb)

Supplementary Video S1

This representative movie shows HeLa cells transfected with the AKAR-PKA reporter and treated with forskolin. (MOV 996 kb)

Supplementary Video S2

This representative movie shows HeLa cells transfected with the AKAR-PKA-PDE reporter and treated with forskolin. (MOV 817 kb)

Supplementary Video S3

This representative movie shows HeLa cells transfected with the AKAR-PKA-PDE reporter, pre-treated with either milrinone or rolipram, and then treated with forskolin. (MOV 1365 kb)

Supplementary Figures S1 and S2

Supplementary Figure S1: mAKAP and ERK5 co-localize at the nuclear membrane of hypertrophic rat neonatal ventriculocytes (RNV). Supplementary Figure S2: mAKAP scaffolds PDE4D3 and ERK5 to form a ternary complex (PDF 126 kb)

Supplementary Figures S3 and S4

Supplementary Figure S3: mapping of the ERK5 binding fragment on mAKAP. Supplementary Figure S4: PDE4D3 links ERK5 to mAKAP. (PDF 99 kb)

Supplementary Figures S5 and S6

Supplementary Figure S5. mAKAP-anchored PDE activity is negatively regulated by ERK. Supplementary Figure S6. PDE4D3 serves as an adapter protein to tether Epac1 to the mAKAP complex. (PDF 94 kb)

Supplementary Figures S7 and S8

Supplementary Figure S7: PDE4D3 tethers Epac1 to the mAKAP complex. Supplementary Figure S8: PDE4D3 binds directly to both Epac1 and ERK5. (PDF 84 kb)

Supplementary Figures S9 and S10

Supplementary Figure S9: mAKAP silenced RNV exhibit reduced hypertrophy in response to LIF stimulation. Supplementary Figure S10: expression of the mAKAP 585-1286 fragment displaces endogenous mAKAP and ablates LIF induced hypertrophy in RNV. (PDF 140 kb)

Supplementary Figures S11 and S12

Supplementary Figure S11: mAKAP plays a role in LIF-induced cardiac hypertrophy. Supplementary Figure S12: displacement of mAKAP inhibits LIF-induced expression of ANF, an indicator of hypertrophy. (PDF 143 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dodge-Kafka, K., Soughayer, J., Pare, G. et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437, 574–578 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing