Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A sensory source for motor variation

Abstract

Suppose that the variability in our movements1,2,3,4,5,6,7,8,9 is caused not by noise in the motor system itself, nor by fluctuations in our intentions or plans, but rather by errors in our sensory estimates of the external parameters that define the appropriate action. For tasks in which precision is at a premium, performance would be optimal if no noise were added in movement planning and execution: motor output would be as accurate as possible given the quality of sensory inputs. Here we use visually guided smooth-pursuit eye movements in primates10 as a testing ground for this notion of optimality. In response to repeated presentations of identical target motions, nearly 92% of the variance in eye trajectory can be accounted for as a consequence of errors in sensory estimates of the speed, direction and timing of target motion, plus a small background noise that is observed both during eye movements and during fixations. The magnitudes of the inferred sensory errors agree with the observed thresholds for sensory discrimination by perceptual systems, suggesting that the very different neural processes of perception and action are limited by the same sources of noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of the variability in pursuit for a given target motion.
Figure 2: Analysis of variation in pursuit trajectory for a single day's experiment.
Figure 3: Reconstruction of individual pursuit trials from the model described by equation (1).

Similar content being viewed by others

References

  1. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954), reprinted in. J. Exp. Psychol. 121, 262–269 (1992)

    Article  CAS  Google Scholar 

  2. Gordon, J., Ghilardi, M. F. & Ghez, C. Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp. Brain Res. 99, 97–111 (1994)

    Article  CAS  Google Scholar 

  3. Messier, J. & Kalaska, J. F. Comparison of variability of initial kinematics and endpoints of reaching movements. Exp. Brain Res. 125, 129–152 (1999)

    Article  Google Scholar 

  4. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  ADS  CAS  Google Scholar 

  5. d'Avella, A. & Bizzi, E. Low dimensionality of surpaspinally induced force fields. Proc. Natl Acad. Sci. USA 95, 7711–7714 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Santello, M., Flanders, M. & Soechting, J. F. Postural hand strategies for tool use. J. Neurosci. 18, 10105–10115 (1998)

    Article  CAS  Google Scholar 

  7. Sanger, T. D. Human arm movements described by a low-dimensional superposition of principal components. J. Neurosci. 20, 1066–1072 (2000)

    Article  CAS  Google Scholar 

  8. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002)

    Article  CAS  Google Scholar 

  9. Donchin, O., Francis, J. T. & Shadmehr, R. Quantifying generalization from trial-by-trial behaviour of adaptive systems that learn with basis functions: theory and experiments in human motor control. J. Neurosci. 23, 9032–9045 (2003)

    Article  CAS  Google Scholar 

  10. Lisberger, S. G., Morris, E. J. & Tyschen, L. Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annu. Rev. Neurosci. 10, 97–129 (1987)

    Article  CAS  Google Scholar 

  11. Lisberger, S. G. & Westbrook, L. E. Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. J. Neurosci. 5, 1662–1673 (1985)

    Article  CAS  Google Scholar 

  12. de Bruyn, B. & Orban, G. A. Human velocity and direction discrimination measured with random dot patterns. Vision Res. 28, 1323–1335 (1988)

    Article  CAS  Google Scholar 

  13. Watamaniuk, S. N. J. & Heinen, S. J. Human smooth pursuit direction discrimination. Vision Res. 39, 59–70 (1999)

    Article  CAS  Google Scholar 

  14. Kowler, E. & McKee, S. P. Sensitivity of smooth eye movement to small differences in target velocity. Vision Res. 27, 993–1015 (1987)

    Article  CAS  Google Scholar 

  15. Gegenfurter, K. R., Xing, D., Scott, B. H. & Hawken, M. J. A comparison of pursuit eye movement and perceptual performance in speed discrimination. J. Vis. 3, 865–876 (2003)

    Google Scholar 

  16. Purushothaman, G. & Bradley, D. C. Neural population code for fine perceptual decisions in area MT. Nature Neurosci. 8, 99–106 (2005)

    Article  CAS  Google Scholar 

  17. Liu, J. & Newsome, W. T. Correlation between speed perception and neural activity in the medial temporal visual area. J. Neurosci. 25, 711–722 (2005)

    Article  CAS  Google Scholar 

  18. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989)

    Article  ADS  CAS  Google Scholar 

  19. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966)

    Google Scholar 

  20. Stone, L. S. & Krauzlis, R. J. Shared motion signals for human perceptual decisions and oculomotor actions. J. Vis. 3, 725–736 (2003)

    Article  Google Scholar 

  21. Carpenter, R. H. S. in Eye Movements: Cognition and Visual Perception (eds Fisher, D. F., Monty, R. A. & Senders, J. W.) 237–246 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1981)

    Google Scholar 

  22. Osborne, L. C., Bialek, W. & Lisberger, S. G. Time course of information about motion direction in visual area MT. J. Neurosci. 24, 3210–3222 (2004)

    Article  CAS  Google Scholar 

  23. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002)

    Article  CAS  Google Scholar 

  24. Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Ross, J., Morrone, M. C., Goldberg, M. E. & Burr, D. C. Changes in visual perception at the time of saccades. Trends Neurosci. 24, 316–318 (2001)

    Google Scholar 

  26. Fuchs, A. F. & Luschei, E. S. Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement. J. Neurophysiol. 33, 382–392 (1970)

    Article  CAS  Google Scholar 

  27. Bialek, W. in Physics of Biomolecules and Cells: Les Houches Session LXXV (eds Flyvbjerg, H., Julicher, F., Ormos, P. & David, F.) 485–577 (EDP Sciences, Les Ulis and Springer-Verlag, Berlin, 2002)

    Google Scholar 

  28. Bialek, W. Physical limits to sensation and perception. Annu. Rev. Biophys. Biophys. Chem. 16, 455–478 (1987)

    Article  CAS  Google Scholar 

  29. Barlow, H. B. Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. Lond. B 212, 1–34 (1981)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a National Institutes of Health Grant and by the Howard Hughes Medical Institute. We thank S. Tokiyama, E. Montgomery and K. MacLeod for assistance with animal monitoring and maintenance, and S. Ruffner for computer programming. W.B. thanks the Sloan-Swartz Center at UCSF for its hospitality during critical stages of this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie C. Osborne.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, L., Lisberger, S. & Bialek, W. A sensory source for motor variation. Nature 437, 412–416 (2005). https://doi.org/10.1038/nature03961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03961

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing