Terrestrial nitrogen and noble gases in lunar soils

Article metrics

Abstract

The nitrogen in lunar soils is correlated to the surface and therefore clearly implanted from outside. The straightforward interpretation is that the nitrogen is implanted by the solar wind, but this explanation has difficulties accounting for both the abundance of nitrogen and a variation of the order of 30 per cent in the 15N/14N ratio. Here we propose that most of the nitrogen and some of the other volatile elements in lunar soils may actually have come from the Earth's atmosphere rather than the solar wind. We infer that this hypothesis is quantitatively reasonable if the escape of atmospheric gases, and implantation into lunar soil grains, occurred at a time when the Earth had essentially no geomagnetic field. Thus, evidence preserved in lunar soils might be useful in constraining when the geomagnetic field first appeared. This hypothesis could be tested by examination of lunar farside soils, which should lack the terrestrial component.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ion escape rates versus ionopause altitude for the present Earth's atmosphere without a global magnetic field.
Figure 2: Estimation of the fraction of the Earth wind (EW) that reaches the Moon.
Figure 3: D/H– 15 N/ 14 N mixing diagram.
Figure 4: Mixing diagrams.

References

  1. 1

    Kerridge, J. F. Solar nitrogen: Evidence for a secular increase in the ratio of nitrogen-15 to nitrogen-14. Science 188, 162–164 (1975)

  2. 2

    Kerridge, J. F. Corpuscular radiation: Evidence from nitrogen isotopes in the lunar regolith. Rev. Geophys. 31, 423–437 (1993)

  3. 3

    Geiss, J. & Bochsler, P. Nitrogen isotopes in the solar system. Geochim. Cosmochim. Acta 46, 529–548 (1982)

  4. 4

    Wieler, R., Humbert, F. & Marty, B. Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth Planet. Sci. Lett. 167, 47–60 (1999)

  5. 5

    Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. Solar wind record on the moon: Deciphering presolar from planetary nitrogen. Science 290, 1142–1145 (2000)

  6. 6

    Shizgal, B. D. & Arkos, G. G. Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev. Geophys. 34, 483–505 (1996)

  7. 7

    Seki, K., Elphic, R. C., Hirahara, M., Terasawa, T. & Mukai, T. On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science 291, 1939–1941 (2001)

  8. 8

    Bochsler, P. Solar wind composition from the Moon. Adv. Space Res. 14(6), 161–175 (1994)

  9. 9

    Mall, U., Christon, S., Kirsch, E. & Gloeckler, G. On the solar cycle dependence of the N+/O+ content in the magnetosphere and its relation to atomic N and O in the Earth's exosphere. Geophys. Res. Lett. 29, doi:10.1029/2001GL013957 (2002)

  10. 10

    Hale, C. J. & Dunlop, D. Evidence for an early Archean geomagnetic field: a paleomagnetic study of the Komati Formation, Barberton Greenstone belt, South Africa. Geophys. Res. Lett. 11, 97–100 (1984)

  11. 11

    Yoshihara, A. & Hamano, Y. Paleomagnetic constraints on the Archean geomagnetic field intensity obtained from komatiites of the Barberton and Belingwe greenstone belts, South Africa and Zimbabwe. Precambr. Res. 131, 111–142 (2004)

  12. 12

    Kasprzak, W. T., Grebowsky, J. M. & Niemann, H. B. Superthermal >36-eV ions observed in the near-tail region of Venus by the Pioneer Venus Orbiter Neutral Mass spectrometer. J. Geophys. Res. 96, 11175–11187 (1991)

  13. 13

    Grebowsky, J. M., Kasprzak, W. T., Hartle, R. E., Mahajan, K. K. & Wagner, T. C. J. Superthermal ions detected in Venus dayside ionosheath, ionopause, and magnetic barrier regions. J. Geophys. Res. 98, 9055–9064 (1993)

  14. 14

    Abe, Y. Physical state of the very early Earth. Lithos 30, 223–235 (1993)

  15. 15

    Picone, J. M. et al. Enhanced empirical models of the thermosphere. Phys. Chem. Earth C 25, 537–542 (2000)

  16. 16

    Richards, P. G., Fennelly, J. A. & Torr, D. G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 99, 8981–8992 (1994)

  17. 17

    Bills, B. G. & Ray, R. D. Lunar orbital evolution: A synthesis of recent results. Geophys. Res. Lett. 26, 3045–3048 (1999)

  18. 18

    Abe, M. & Ooe, M. Tidal history of the Earth-Moon dynamical system before Cambrian age. J. Geodet. Soc. Jpn 47, 514–520 (2001)

  19. 19

    Hashizume, K., Marty, B. & Wieler, R. Analyses of nitrogen and argon in single lunar grains: towards a quantification of the asteroidal contribution to planetary surface. Earth Planet. Sci. Lett. 202, 201–216 (2002)

  20. 20

    Heber, V. S., Baur, H. & Wieler, R. Helium in lunar samples analyzed by high-resolution stepwise etching: Implications for the temporal constancy of solar wind isotopic composition. Astrophys. J. 597, 602–614 (2003)

  21. 21

    Geiss, J. Solar wind composition and implications about the history of the solar system. Proc. 13th Int. Cosmic Ray Conf. 3375–3398 (Denver, University of Denver, 1973)

  22. 22

    Mahaffy, P. R., Donahue, T. M., Atreya, S. K., Owen, T. C. & Niemann, H. B. Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. Space Sci. Rev. 84, 252–263 (1998)

  23. 23

    Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci 35, 949–973 (2000)

  24. 24

    Ozima, M. & Podosek, F. A. Noble Gas Geochemistry 2nd edn (Cambridge Univ. Press, Cambridge, 2002)

  25. 25

    Hamano, Y. & Ozima, M. in Terrestrial Rare Gases (eds Alexander, E. C. Jr & Ozima, M.) 155–173 (Japan Scientific Societies Press, Tokyo, 1978)

  26. 26

    Eugster, O., Terribini, D., Polnau, E. & Kramers, J. The antiquity indicator argon-40/argon-36 for lunar surface samples equilibrated by uranium-235-xenon-136 dating. Meteorit. Planet. Sci 36, 1097–1115 (2001)

  27. 27

    Ozima, M., Miura, Y. N. & Podosek, F. A. Orphan radiogenic noble gases in lunar breccias: Evidence for planetary pollution of the Sun? Icarus 170, 17–23 (2004)

  28. 28

    Bernatowicz, T., et al. The regolith history of 14307. Proc. Lunar Sci. Conf. VIII 2763–2783, (1978)

  29. 29

    Megrue, G. H. Spatial distribution of 40Ar/36Ar ages in lunar breccia 14301. J. Geophys. Res. 78, 3216–3221 (1978)

  30. 30

    Dalrymple, G. B. & Ryder, G. Argon-40/Argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. J. Geophys. Res. 101, 26069–26084 (1996)

  31. 31

    Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, Cambridge, 1999)

  32. 32

    Bilitza, D. International Reference Ionosphere 2000. Radio Sci. 36, 261–275 (2001)

  33. 33

    Wieler, R. in Reviews in Mineralogy & Geochemistry Vol. 47 (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) (Geochemical Society, Mineralogical Society of America, Washington DC, 2002)

Download references

Acknowledgements

We thank B. Marty, D. Stevenson and K. Zahnle for suggestions and comments that improved the manuscript. We owe much to the work of K. Hashizume, V. Heber, and co-workers, which inspired us to undertake this work. This work is supported by the 21st Century Center of Excellence (21CoE) SELIS (Dynamics of Sun-Earth-Life Interactive System) Program of Japan. Author Contributions K.S. performed atmospheric escape estimation, and N.T. and H.S. ionospheric modelling.

Author information

Correspondence to M. Ozima.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.