Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature

Abstract

Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells1. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indicate that macrophages can use WNT ligands to influence cell-fate decisions—including cell death—in adjacent cells, and raise the possibility that they do so in many different cellular contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regression of the hyaloid vessels is macrophage-dependent.
Figure 2: The WNT pathway response in VECs is required for hyaloid vessel regression.
Figure 3: WNT7b is required for hyaloid vessel regression and is expressed in macrophages.
Figure 4: Macrophages are a critical paracrine source of WNT7b required for hyaloid vessel regression.

Similar content being viewed by others

References

  1. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002)

    Article  CAS  Google Scholar 

  2. Lang, R. A. & Bishop, M. J. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74, 453–462 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Diez-Roux, G. & Lang, R. A. Macrophages induce apoptosis in normal cells in vivo. Development 124, 3633–3638 (1997)

    CAS  PubMed  Google Scholar 

  4. Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Reddien, P. W., Cameron, S. & Horvitz, H. R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito, M. & Yoshioka, M. Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat. Embryol. (Berl.) 200, 403–411 (1999)

    Article  CAS  Google Scholar 

  8. Nusse, R. WNT targets. Repression and activation. Trends Genet. 15, 1–3 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Huelsken, J. & Birchmeier, W. New aspects of Wnt signalling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa, T. et al. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33 (2001)

    CAS  PubMed  Google Scholar 

  11. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand–receptor pair. Cell 116, 883–895 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signalling. Cell 103, 311–320 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signalling: arrows point the way. Development 131, 1663–1677 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Perrimon, N. Serpentine proteins slither into the wingless and hedgehog fields. Cell 86, 513–516 (1996)

    Article  CAS  PubMed  Google Scholar 

  15. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Genderen, C. et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8, 2691–2703 (1994)

    Article  CAS  PubMed  Google Scholar 

  19. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999)

    CAS  PubMed  Google Scholar 

  20. Goodwin, A. M. & D'Amore, P. A. Wnt signalling in the vasculature. Angiogenesis 5, 1–9 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Shu, W., Jiang, Y. Q., Lu, M. M. & Morrisey, E. E. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129, 4831–4842 (2002)

    CAS  PubMed  Google Scholar 

  22. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Smith, K. et al. Up-regulation of macrophage Wnt gene expression in adenoma–carcinoma progression of human colorectal cancer. Br. J. Cancer 81, 496–502 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004)

    Article  CAS  Google Scholar 

  26. Frade, J. M. & Barde, Y. A. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20, 35–41 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diez-Roux, G., Argilla, M., Makarenkova, H., Ko, K. & Lang, R. A. Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126, 2141–2147 (1999)

    CAS  PubMed  Google Scholar 

  29. Dann, C. E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank: P. Speeg for technical assistance; E. Fuchs, L. Niswander and C. Dean for the TOPGAL mice; S. McKercher and R. Maki for the PU.1-null mice; L. Chan for the Lrp5-null mice; and, R. Grosschedl for the Lef1-null mice. We are indebted to Q. Xu and J. Nathans for providing the SuperTOPFLASH cell line and for the Fzd and Norrin expression plasmids. This work was supported by NIH grants to E.E.M., A.P.M., G.K. and R.A.L. G.K. was also supported by funds from the March of Dimes, and R.A.L. by funds from the Abrahamson Pediatric Eye Institute Endowment at the Children's Hospital Medical Center of Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Lang.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Pupillary membrane persistence in the PU.1 mutant mouse. Pupillary membrane is persistent in the PU.1 mutant mouse. (PDF 830 kb)

Supplementary Figure S2

Assessment of Wnt pathway stimulation by, and Wnt gene expression in, hyaloid macrophages. This figure shows that macrophages can stimulate cellular responses in hyaloid VECs that are characteristic of Wnt pathway responses and that macrophages can express Wnt ligand genes. (PDF 746 kb)

Supplementary Figure S3

Generation of the Wnt7bd1allele. This figure shows the gene-targeting scheme for generation of the Wnt7bd1 allele. (PDF 67 kb)

Supplementary Figure S4

Assessment of Fzd receptors in mediating Wnt7b signalling. Supplementary Figure S4 shows that Fzd4 can mediate Wnt7b signalling and that Fzd4 is expressed in the hyaloid capillaries. (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobov, I., Rao, S., Carroll, T. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417–421 (2005). https://doi.org/10.1038/nature03928

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03928

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing