Membrane vesicles traffic signals and facilitate group activities in a prokaryote

Abstract

Many bacteria use extracellular signals to communicate and coordinate social activities, a process referred to as quorum sensing1. Many quorum signals have significant hydrophobic character, and how these signals are trafficked between bacteria within a population is not understood. Here we show that the opportunistic human pathogen Pseudomonas aeruginosa packages the signalling molecule 2-heptyl-3-hydroxy-4-quinolone (pseudomonas quinolone signal; PQS)2 into membrane vesicles that serve to traffic this molecule within a population. Removal of these vesicles from the bacterial population halts cell–cell communication and inhibits PQS-controlled group behaviour. We also show that PQS actively mediates its own packaging and the packaging of other antimicrobial quinolines produced by P. aeruginosa into vesicles. These findings illustrate that a prokaryote possesses a signal trafficking system with features common to those used by higher organisms and outlines a novel mechanism for delivery of a signal critical for coordinating group behaviour in P. aeruginosa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Packaging of the P. aeruginosa signalling molecule PQS into MVs.
Figure 2: Analysis of antimicrobial quinolines from P. aeruginosa MVs using LC–MS and CID.
Figure 3: Biological activities of MVs.
Figure 4: Exogenous PQS stimulates P. aeruginosa MV formation and is packaged into MVs.
Figure 5: PQS-mediated gene regulation is not required for MV formation.

References

  1. 1

    Parsek, M. R. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: A signalling mechanism involved in associations with higher organisms. Proc. Natl Acad. Sci. USA 97, 8789–8793 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Pesci, E. C. et al. Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 11229–11234 (1999)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Deziel, E. et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl Acad. Sci. USA 101, 1339–1344 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003)

    CAS  Article  Google Scholar 

  6. 6

    Kadurugamuwa, J. L. & Beveridge, T. J. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177, 3998–4008 (1995)

    CAS  Article  Google Scholar 

  7. 7

    Nguyen, T. T., Saxena, A. & Beveridge, T. J. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. J. Electron Microsc. (Tokyo) 52, 465–469 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Kadurugamuwa, J. L. & Beveridge, T. J. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J. Antimicrob. Chemother. 40, 615–621 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Rodriguez-Boulan, E., Kreitze, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Gallagher, K. L. & Benfey, P. N. Not just another hole in the wall: understanding intercellular protein trafficking. Genes Dev. 19, 189–195 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Lepine, F., Milot, S., Deziel, E., He, J. & Rahme, L. G. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J. Am. Soc. Mass Spectrom. 15, 862–869 (2004)

    CAS  Article  Google Scholar 

  12. 12

    Machan, Z. A., Taylor, G. W., Pitt, T. L., Cole, P. J. & Wilson, R. 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J. Antimicrob. Chemother. 30, 615–623 (1992)

    CAS  Article  Google Scholar 

  13. 13

    Kadurugamuwa, J. L. & Beveridge, T. J. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178, 2767–2774 (1996)

    CAS  Article  Google Scholar 

  14. 14

    Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C. & Manoil, C. Functions required for extracellular quinolone signalling by Pseudomonas aeruginosa. J. Bacteriol. 184, 6472–6480 (2002)

    CAS  Article  Google Scholar 

  15. 15

    Kadurugamuwa, J. L. et al. S-layered Aneurinibacillus and Bacillus spp. are susceptible to the lytic action of Pseudomonas aeruginosa membrane vesicles. J. Bacteriol. 180, 2306–2311 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Deziel, E. et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol. Microbiol. 55, 998–1014 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Cao, H. et al. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natl Acad. Sci. USA 98, 14613–14618 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kadurugamuwa, J. L., Clarke, A. J. & Beveridge, T. J. Surface action of gentamicin on Pseudomonas aeruginosa. J. Bacteriol. 175, 5798–5805 (1993)

    CAS  Article  Google Scholar 

  19. 19

    Lin, Y. H. et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47, 849–860 (2003)

    Article  Google Scholar 

  20. 20

    Wang, Y. J. & Leadbetter, J. R. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71, 1291–1299 (2005)

    CAS  Article  Google Scholar 

  21. 21

    Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. & Greenberg, E. P. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl Acad. Sci. USA 101, 3587–3590 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Hoiby, N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Whiteley, M., Parsek, M. R. & Greenberg, E. P. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J. Bacteriol. 182, 4356–4360 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Whiteley, M. et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Essar, D. W., Eberly, L., Hadero, A. & Crawford, I. P. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172, 884–900 (1990)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Jackson for LC–MS analysis; L. Rahme for the mvfR mutant; and the MGH-Parabiosys:NHLBI Program for Genomic applications, Massachusetts General Hospital and Harvard Medical School (http://pga.mgh.harvard.edu/cgi-bin/pa14/mutants/retrieve.cgi), for the pqsA mutant. This work was supported by a grant from the Oklahoma Center for the Advancement of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marvin Whiteley.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Transmission electron micrograph of negatively-stained P. aeruginosa membrane vesicles. (PPT 168 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mashburn, L., Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005). https://doi.org/10.1038/nature03925

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.