Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The chemical structure of the Hawaiian mantle plume

Abstract

The Hawaiian–Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface1,2,3,4,5. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed ‘Kea’ and ‘Loa’), whose rocks are characterized by general geochemical differences2,3,4,5. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume4,5. Melt inclusions, or samples of local magma ‘frozen’ in olivine phenocrysts during crystallization, may record complexities of mantle sources6, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes—even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Map of the Hawaiian islands.
Figure 2: Variation of major element ratio in bulk rocks compared to melt inclusions.
Figure 3: Variation of trace element ratios in bulk rocks compared to melt inclusions.
Figure 4: Variation of trace element ratios in melt inclusions compared to oceanic crust basalt.

References

  1. 1

    Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    Article  ADS  Google Scholar 

  2. 2

    Frey, F. A. & Rhodes, J. M. Intershield geochemical differences among Hawaiian volcanoes: implications for source compositions, melting process and magma ascent paths. Phil. Trans. R. Soc. Lond. A 342, 121–136 (1993)

    CAS  ADS  Google Scholar 

  3. 3

    Frey, F. A., Garcia, M. O. & Roden, M. F. Geochemical characteristics of Koolau Volcano: implications of intershield differences among Hawaiian volcanoes. Geochim. Cosmochim. Acta 58, 1441–1462 (1994)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Hauri, E. H. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Lassiter, J. C., DePaolo, D. J. & Tatsumoto, M. Isotopic evolution of Mauna Kea Volcano: results from the initial phase of the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11769–11780 (1996)

    Article  ADS  Google Scholar 

  6. 6

    Sobolev, A. V. Melt inclusions in minerals as a source of principle petrological information. Petrology 4, 209–220 (1996)

    Google Scholar 

  7. 7

    Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Norman, M. D., Garcia, M. O., Kamenetsky, V. S. & Nielson, R. L. Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics. Chem. Geol. 183, 143–168 (2002)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Maclennan, J., McKenzie, D., Hilton, F., Gronvöld, K. & Shimizu, N. Geochemical variability in a single flow from northern Iceland. J. Geophys. Res. 108, 2007, doi:10.1029/2000JB000142 (2003)

    Article  ADS  Google Scholar 

  10. 10

    Ren, Z.-Y., Takahashi, E., Orihashi, Y. & Johnson, K. M. T. Petrogenesis of tholeiitic lavas from the submarine Hana Ridge, Haleakala volcano, Hawaii. J. Petrol. 45, 2067–2099 (2004)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Ren, Z.-Y., Shibata, T., Yoshikawa, M., Johnson, K. T. M. & Takahashi, E. Isotope compositions of the submarine Hana ridge lavas, Haleakala volcano, Hawaii: Implications for source compositions, melting process and the structure of Hawaiian plume. J. Petrol. (in the press)

  12. 12

    Tanaka, R., Nakamura, E. & Takahashi, E. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, M. O., Naka, J. & Aramaki, S.) 311–332 (Vol. 128, Geophysical Monograph Series, AGU, Washington DC, 2002)

    Book  Google Scholar 

  13. 13

    Garcia, M. O., Hulsebosch, T. P. & Rhodes, J. M. in Mauna Loa Revealed: Structure, Composition, History, and Hazards (eds Rhodes, J. M. & Lockwood, J. P.) 219–239 (Vol. 92, Geophysical Monograph Series, AGU, Washington DC, 1995)

    Book  Google Scholar 

  14. 14

    Gaetani, G. A. & Watson, E. B. Open system behaviour of olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 183, 27–41 (2000)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Huang, S. & Frey, F. A. Trace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: petrogenetic implications of correlations with major element content and isotopic ratios. Geochem. Geophys. Geosyst. 6, doi:10.1029/2002GC000322 (2004)

  16. 16

    Rhodes, J. M. & Vollinger, M. J. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types. Geochem. Geophys. Geosyst. 5, doi:10.1029/2002GC000434 (2004)

  17. 17

    Putirka, K. Melting depth and mantle heterogeneity beneath Hawaii and the East Pacific Rise: constraints from Na/Ti and rare earth elements ratios. J. Geophys. Res. 104, 2817–2829 (1999)

    CAS  Article  ADS  Google Scholar 

  18. 18

    Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005)

    CAS  Article  ADS  Google Scholar 

  19. 19

    West, H. B. & Leeman, W. P. Isotopic evolution of lavas from Haleakala Crater, Hawaii. Earth Planet. Sci. Lett. 84, 211–225 (1987)

    CAS  Article  ADS  Google Scholar 

  20. 20

    Eisele, J., Abouchami, W., Galer, S. J. G. & Hofmann, A. W. The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000339 (2003)

  21. 21

    Blichert-Toft, J., Weis, D., Maerschalk, C., Agranier, A. & Albarède, F. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000340 (2003)

  22. 22

    Hirose, K. & Kushiro, I. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 114, 477–489 (1993)

    CAS  Article  ADS  Google Scholar 

  23. 23

    Slater, L., McKenzie, D., Gronvold, K. & Shimizu, N. Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol. 42, 321–354 (2001)

    CAS  Article  ADS  Google Scholar 

  24. 24

    Lassiter, J. C. & Hauri, E. H. Osmium-isotopic variations in Hawaiian lavas and evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998)

    CAS  Article  ADS  Google Scholar 

  25. 25

    Takahashi, E., Nakajima, K. & Wright, T. L. Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet. Sci. Lett. 162, 63–80 (1998)

    Article  ADS  Google Scholar 

  26. 26

    Pertermann, M. & Hirschmann, M. M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. 108, doi:10.1029/2000JB000118 (2003)

  27. 27

    Hofmann, A. W. & Jochum, K. P. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalt, Hawaiian Scientific Drilling Project. J. Geophys. Res. 101, 11831–11839 (1996)

    Article  ADS  Google Scholar 

  28. 28

    Gasperini, D. et al. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle. Nature 408, 701–704 (2000)

    CAS  Article  ADS  Google Scholar 

  29. 29

    Sobolev, A. V., Hofmann, A. W. & Nikogosian, I. K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986–989 (2000)

    CAS  Article  ADS  Google Scholar 

  30. 30

    Farnetani, C. G., Legras, B. & Tackley, P. J. Mixing and deformation in mantle plumes. Earth Planet. Sci. Lett. 196, 1–15 (2002)

    CAS  Article  ADS  Google Scholar 

  31. 31

    Takahashi, E. & Nakajima, K. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, M. O., Naka, J. & Aramaki, S.) 403–418 (Vol. 128, Geophysical Monograph Series, AGU, Washington DC, 2002)

    Google Scholar 

  32. 32

    Norman, M. D., Griffin, W. L., Pearson, N. J., Garcia, M. O. & O'Reilly, S. Y. Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation ICPMS, solution ICPMS, proton microprobe, and electron microprobe data. J. Anal. Atom. Spectrom. 13, 477–482 (1998)

    CAS  Article  Google Scholar 

  33. 33

    Sun, S.-S. & McDonough, W. F. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) 313–345 (Special Publication 42, Geological Society, London, 1989)

    Google Scholar 

Download references

Acknowledgements

We thank F. A. Frey for comments and suggestions, and M. F. Coffin, L. Danyushevsky, A. W. Hofmann, J. Lassiter, D. A. Clague, S. Escrig, D. Weis and K. Putirka for discussions, comments and technical advice. C. Herzberg, J. M. Rhodes and M. Kurz provided constructive criticism that led to improvements in the manuscript. Z.-Y.R., S.I. and N.H. are grateful to the JSPS programme for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yuan Ren.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table S1

Major and trace element compositions of olivine-hosted melt inclusions from submarine Hana Ridge lavas, Haleakala volcano, and submarine Makapuu stage lavas of Koolau volcano (XLS 102 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ren, ZY., Ingle, S., Takahashi, E. et al. The chemical structure of the Hawaiian mantle plume. Nature 436, 837–840 (2005). https://doi.org/10.1038/nature03907

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing