Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A late Eemian aridity pulse in central Europe during the last glacial inception


Investigating the processes that led to the end of the last interglacial period is relevant for understanding how our ongoing interglacial will end, which has been a matter of much debate (see, for example, refs 1, 2). A recent ice core from Greenland demonstrates climate cooling from 122,000 years ago3 driven by orbitally controlled insolation, with glacial inception at 118,000 years ago4,5,6,7,8. Here we present an annually resolved, layer-counted record of varve thickness, quartz grain size and pollen assemblages from a maar lake in the Eifel (Germany), which documents a late Eemian aridity pulse lasting 468 years with dust storms, aridity, bushfire and a decline of thermophilous trees at the time of glacial inception. We interpret the decrease in both precipitation and temperature as an indication of a close link of this extreme climate event to a sudden southward shift of the position of the North Atlantic drift, the ocean current that brings warm surface waters to the northern European region. The late Eemian aridity pulse occurred at a 65° N July insolation of 416 W m-2, close to today's value of 428 W m-2 (ref. 9), and may therefore be relevant for the interpretation of present-day climate variability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Equal-area projection of North Atlantic sea surface temperatures derived from the satellite-borne Advanced Very High Resolution Radiometer.
Figure 2: Climate change during the last glacial cycle.
Figure 3: Climate change in the Eifel between 100 and 132 kyr  bp.
Figure 4: Climate change in the Eifel during the last glacial inception from 117–120 kyr  bp.


  1. 1

    Kukla, G. J. & Went, E. Start of a Glacial (Springer, Berlin, 1992)

    Book  Google Scholar 

  2. 2

    Kukla, G., McManus, J. F., Rousseau, D.-D. & Chuine, I. How long and how stable was the last Interglacial? Quat. Sci. Rev. 16, 605–612 (1997)

    ADS  Article  Google Scholar 

  3. 3

    NorthGrip, High resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 43, 147–151 (2004)

    Google Scholar 

  4. 4

    Khodri, M. et al. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–574 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Berger, A. & Loutre, M. F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002)

    CAS  Article  Google Scholar 

  6. 6

    Calov, R., Ganopolski, A., Claussen, M., Petukhov, V. & Greve, R. Transient simulation of the last glacial inception. Part I: Glacial inception as a bifurcation in the climate system. Climate Dyn. 24,doi:10.1007/s00382-005-0007-6 (2005)

  7. 7

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–685 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Sánchez-Goñi, M. F. et al. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the mediterranean region. Climate Dyn. 19, 95–105 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991)

    ADS  Article  Google Scholar 

  10. 10

    Bond, G. & Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010 (1995)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Thouveny, N. et al. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371, 503–506 (1994)

    ADS  Article  Google Scholar 

  12. 12

    Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Lehman, S. J., Sachs, J. P., Rotwell, A. M., Keigwin, L. D. & Boyle, E. A. Relation of subtropical Atlantic temperature, high-latitude ice rafting, deep water formation, and European climate 130,000–60,000 years ago. Quat. Sci. Rev. 21, 1917–1924 (2002)

    ADS  Article  Google Scholar 

  14. 14

    Müller, U. C. & Kukla, G. J. North Atlantic Current and European environments during the declining stage of the last interglacial. Geology 32, 1009–1012 (2004)

    ADS  Article  Google Scholar 

  15. 15

    Van Kreveld, S. et al. Potential links between surging ice sheets, circulation changes, and the Daansgaard–Oeschger cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15, 425–442 (2000)

    ADS  Article  Google Scholar 

  16. 16

    McManus, J. F. et al. High resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326–329 (1994)

    ADS  Article  Google Scholar 

  17. 17

    Chapman, M. R. & Shackleton, N. J. Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27, 795–798 (1999)

    ADS  Article  Google Scholar 

  18. 18

    Müller, H. Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geol. Jb. A 21, 149–169 (1974)

    Google Scholar 

  19. 19

    Holzkämper, S., Mangini, A., Spötl, C. & Mudelsee, M. Timing and progression of the Last Interglacial derived from a high alpine stalagmite. Geophys. Res. Lett. 31, L07201 (doi:10.1029/2003GL019112) (2004)

    ADS  Article  Google Scholar 

  20. 20

    Kühl, N. & Litt, T. Quantitative time series reconstruction of Eemian temperature at three European sites using pollen data. Veget. Hist. Archaeobot. 12, 205–214 (2003)

    Article  Google Scholar 

  21. 21

    Büchel, G. Vulkanologische Karte der West- und Hocheifel, Map 1:50,000 (Institut für Geowissenschaften, Universität Mainz, 1994)

    Google Scholar 

  22. 22

    Larsen, C. P. S. et al. Relations between lake morphometry and the presence of laminated lake sediments: a re-examination of Larsen and MacDonald (1993). Quat. Sci. Rev. 17, 711–717 (1998)

    ADS  Article  Google Scholar 

  23. 23

    Seelos, K. & Sirocko, F. RADIUS—rapid particle analysis of digital images by ultra-high resolution scanning of thin sections. Sedimentology 52, 669–681 (2005)

    ADS  Article  Google Scholar 

  24. 24

    de Beaulieu, J. L. & Reille, M. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France). Veget. Hist. Archaeobot. 1, 233–242 (1992)

    Article  Google Scholar 

  25. 25

    Menke, B. & Tynni, R. Das Eeminterglazial und das Weichselfrühglazial von Rederstall/Dithmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozän-Gliederung. Geol. Jb. A 76, 3–120 (1984)

    Google Scholar 

  26. 26

    Woillard, G. Abrupt end of the last interglacial s.s. in north-east France. Nature 281, 558–565 (1979)

    ADS  Article  Google Scholar 

  27. 27

    Björck, S. et al. Eemian lake development, hydrology and climate: a multi-stratigraphic study of the Hollerup site in Denmark. Quat. Sci. Rev. 19, 509–536 (2000)

    ADS  Article  Google Scholar 

  28. 28

    Voelker, A. H. L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1212 (2001)

    ADS  Article  Google Scholar 

  29. 29

    Erfurt, G., Krbetschek, M. R., Bortolot, V. J. & Preusser, F. A fully automated multi-spectral radioluminescence reading system for geochronometry and dosimetry. Nucl. Instrum. Methods Phys. Res. B 207, 487–499 (2003)

    ADS  CAS  Article  Google Scholar 

  30. 30

    van den Bogaard, P., Hall, C. M., Schmincke, H.-U. & York, D. Precise single-grain 40Ar/39Ar dating of a cold to warm climate transition in Central Europe. Nature 342, 523–525 (1989)

    ADS  CAS  Article  Google Scholar 

Download references


Drilling of the ELSA cores was done by Stölben GmbH (, and we thank J. Schmitz for his continuous effort to increase the quality of the core material. We thank the Stiftung Rheinland-Pfalz für Innovation, which initiated the first ELSA drillings, and the DEKLIM program of the German Ministry for Education and Research, which financed ELSA over the past 5 years.Author Contributions K. Seelos, grain size analysis; K. Schaber, tuning; B.R., varve counting; F.D. and M.D., pollen analysis; K.J., varve classification; M.K. and D.D., luminescence dating.

Author information



Corresponding author

Correspondence to F. Sirocko.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Photos of ELSA core HL2 (56 – 55m depth) from the dry maar lake west of Hoher List. (PDF 3627 kb)

Supplementary Figure S2

Pollen spectra. (PDF 2188 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sirocko, F., Seelos, K., Schaber, K. et al. A late Eemian aridity pulse in central Europe during the last glacial inception. Nature 436, 833–836 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing