Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A possible unifying principle for mechanosensation

Abstract

Of Aristotle's five senses, we know that sight, smell and much of taste are initiated by ligands binding to G-protein-coupled receptors; however, the mechanical sensations of touch and hearing remain without a clear understanding of their molecular basis. Recently, the relevant force-transducing molecules—the mechanosensitive ion channels—have been identified. Such channel proteins purified from bacteria sense forces from the lipid bilayer in the absence of other proteins. Recent evidence has shown that lipids are also intimately involved in opening and closing the mechanosensitive channels of fungal, plant and animal species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial channels function as emergency release valves in vivo , and the mechanosensitivity of pure MscL channel protein in vitro.
Figure 2: Opening MscL in E. coli.
Figure 3: The intrinsic forces in the lipid bilayer, and how applied forces can open MS channels.
Figure 4: The shape of bilayer components affects its geometry and intrinsic forces.
Figure 5: TRP channels in auditory sensory cells.
Figure 6: The disparate sensing of solutes and solvent.

Similar content being viewed by others

References

  1. Britten, R. J. & McClure, F. T. The amino acid pool in Escherichia coli. Bacteriol. Rev. 26, 292–335 (1962)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berrier, C., Coulombe, A., Szabo, I., Zoratti, M. & Ghazi, A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur. J. Biochem. 206, 559–565 (1992)

    CAS  PubMed  Google Scholar 

  3. Martinac, B., Buechner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84, 2297–2301 (1987)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinac, B., Delcour, A. H., Buechner, M., Adler, J. & Kung, C. Advances in Comparative and Environmental Physiology 3–18 (Springer, Heidelberg, 1992)

    Google Scholar 

  6. Delcour, A. H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265–268 (1994)

    ADS  CAS  PubMed  Google Scholar 

  8. Sukharev, S. I., Martinac, B., Blount, P. & Kung, C. Functional reconstitution as an assay for biochemical isolation of channel proteins: application to the molecular identification of a bacterial mechanosensitive channel. Methods: A Companion to Methods in Enzymology 6, 51–59 (1994)

    CAS  Google Scholar 

  9. Blount, P. et al. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J. 15, 4798–4805 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998)

    ADS  CAS  PubMed  Google Scholar 

  11. Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001)

    ADS  CAS  PubMed  Google Scholar 

  12. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002)

    ADS  CAS  PubMed  Google Scholar 

  13. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002)

    CAS  PubMed  Google Scholar 

  14. Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002)

    ADS  CAS  PubMed  Google Scholar 

  15. Sukharev, S. I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657 (1997)

    CAS  PubMed  Google Scholar 

  16. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001)

    CAS  PubMed  Google Scholar 

  17. Sukharev, S. & Corey, D. P. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE doi:10.1126/stke.2332004eg7 (2004)

  18. Blount, P. Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron 37, 731–734 (2003)

    CAS  PubMed  Google Scholar 

  19. Sukharev, S. I., Sigurdson, W. J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–540 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ou, X. R., Blount, P., Hoffman, R. J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl Acad. Sci. USA 95, 11471–11475 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maurer, J. A. & Dougherty, D. A. Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL: implications for channel gating and evolutionary design. J. Biol. Chem. 278, 21076–21082 (2003)

    CAS  PubMed  Google Scholar 

  23. Cantor, R. S. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. 101, 1723–1725 (1997)

    CAS  Google Scholar 

  24. Cantor, R. S. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids 101, 45–56 (1999)

    CAS  PubMed  Google Scholar 

  25. Lindahl, E. & Edholm, O. Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys. 113, 3882–3893 (2000)

    ADS  CAS  Google Scholar 

  26. Gullingsrud, J. & Schulten, K. Gating of MscL studied by steered molecular dynamics. Biophys. J. 85, 2087–2099 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiggins, P. & Phillips, R. Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl Acad. Sci. USA 101, 4071–4076 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl Acad. Sci. USA 71, 4457–4461 (1974)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990)

    ADS  CAS  PubMed  Google Scholar 

  30. Lundbaek, J. A., Maer, A. M. & Andersen, O. S. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry 36, 5695–5701 (1997)

    CAS  PubMed  Google Scholar 

  31. Cantor, R. S. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Toxicol. Lett. 100–101, 451–458 (1998)

    PubMed  Google Scholar 

  32. Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13, 422–428 (2001)

    CAS  PubMed  Google Scholar 

  33. Patel, A. J. et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17, 4283–4290 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128–10133 (2000)

    CAS  PubMed  Google Scholar 

  35. Patel, A. J. & Honore, E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95, 1013–1021 (2001)

    CAS  PubMed  Google Scholar 

  36. Chemin, J. et al. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J. 24, 44–53 (2005)

    CAS  PubMed  Google Scholar 

  37. Chemin, J. et al. Lysophosphatidic acid-operated K+ channels. J. Biol. Chem. 280, 4415–4421 (2005)

    CAS  PubMed  Google Scholar 

  38. Yang, X. C. & Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071 (1989)

    ADS  CAS  PubMed  Google Scholar 

  39. Hamill, O. P. & McBride, D. W. Jr The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996)

    CAS  PubMed  Google Scholar 

  40. Ermakov, Y. A., Averbakh, A. Z., Yusipovich, A. I. & Sukharev, S. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys. J. 80, 1851–1862 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598 (2000); erratum J. Gen. Physiol. 117, 371 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guharay, G. & Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond.) 352, 685–701 (1984)

    CAS  Google Scholar 

  43. Suchyna, T. M. et al. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430, 235–240 (2004)

    ADS  CAS  PubMed  Google Scholar 

  44. Zhang, Y., Gao, F., Popov, V. L., Wen, J. W. & Hamill, O. P. Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J. Physiol. (Lond.) 523, 117–130 (2000)

    CAS  Google Scholar 

  45. Maroto, R. et al. The role of TRPC1 in forming the mechanosensitive cation channel in frog oocytes. Nature Cell Biol. 7, 179–185 (2005)

    CAS  PubMed  Google Scholar 

  46. Morris, C. E. & Horn, R. Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251, 1246–1249 (1991)

    ADS  CAS  PubMed  Google Scholar 

  47. Zhang, Y. & Hamill, O. P. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J. Physiol. (Lond.) 523, 101–115 (2000)

    CAS  Google Scholar 

  48. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002)

    CAS  PubMed  Google Scholar 

  49. Goodman, M. B. & Schwarz, E. M. Transducing touch in Caenorhabditis elegans. Annu. Rev. Physiol. 65, 429–452 (2003)

    CAS  PubMed  Google Scholar 

  50. Bianchi, L. et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for nevrosis initiation. Nature Neurosci. 7, 1337–1344 (2004)

    CAS  PubMed  Google Scholar 

  51. Goodman, M. B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002)

    ADS  CAS  PubMed  Google Scholar 

  52. Chelur, D. S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420, 669–673 (2002)

    ADS  CAS  PubMed  Google Scholar 

  53. Emtage, L., Gu, G., Hartwieg, E. & Chalfie, M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 44, 795–807 (2004)

    CAS  PubMed  Google Scholar 

  54. Zhang, S. et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatic-like domain. Curr. Biol. 14, 1888–01896 (2004)

    Google Scholar 

  55. O'Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci. 8, 43–50 (2005)

    CAS  PubMed  Google Scholar 

  56. Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997)

    ADS  CAS  PubMed  Google Scholar 

  57. Montell, C. TRP trapped in fly signalling web. Curr. Opin. Neurobiol. 8, 389–397 (1998)

    CAS  PubMed  Google Scholar 

  58. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002)

    CAS  PubMed  Google Scholar 

  59. Corey, D. P. New TRP channels in hearing and mechanosensation. Neuron 39, 585–588 (2003)

    CAS  PubMed  Google Scholar 

  60. Minke, B., Wu, C.-F. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975)

    ADS  CAS  PubMed  Google Scholar 

  61. Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999)

    ADS  CAS  PubMed  Google Scholar 

  63. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000)

    ADS  CAS  PubMed  Google Scholar 

  64. Tracey, W. D. Jr, Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003)

    CAS  PubMed  Google Scholar 

  65. Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl Acad. Sci. USA 99, 14994–14999 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996)

    ADS  CAS  PubMed  Google Scholar 

  67. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003)

    CAS  PubMed  Google Scholar 

  68. Gao, X., Wu, L. & O'Neil, R. G. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J. Biol. Chem. 278, 27129–27137 (2003)

    CAS  PubMed  Google Scholar 

  69. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol. 2, 695–702 (2000)

    CAS  PubMed  Google Scholar 

  71. Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35, 307–318 (2002)

    CAS  PubMed  Google Scholar 

  72. Kahn-Kirby, A. et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signalling in vivo. Cell 119, 889–900 (2004)

    CAS  PubMed  Google Scholar 

  73. Liedtke, W., Tobin, D. M., Bargmann, C. I. & Friedman, J. M. Mammalian TRPV4 (VR-OAC) directs behavioural responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 100 (suppl. 2), 14531–14536 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438 (2003)

    ADS  CAS  PubMed  Google Scholar 

  75. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997)

    ADS  CAS  PubMed  Google Scholar 

  76. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci. 5, 856–860 (2002)

    CAS  PubMed  Google Scholar 

  77. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA 101, 396–401 (2004)

    ADS  CAS  PubMed  Google Scholar 

  78. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003)

    ADS  CAS  PubMed  Google Scholar 

  79. Gong, S. et al. Two interdependent TRPV chanel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 24, 9059–9066 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301, 96–99 (2003)

    ADS  CAS  PubMed  Google Scholar 

  81. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004)

    ADS  CAS  PubMed  Google Scholar 

  82. Sollner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428, 955–959 (2004)

    ADS  PubMed  Google Scholar 

  83. Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transductin channel of vertebrate hair cells. Nature 432, 723–730 (2004)

    ADS  CAS  PubMed  Google Scholar 

  84. Howard, J. & Bechstedt, S. Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol. 14, R224–R226 (2004)

    CAS  PubMed  Google Scholar 

  85. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002)

    ADS  CAS  PubMed  Google Scholar 

  86. Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V. & Niemeyer, B. A. Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J. Biol. Chem. 279, 34456–34463 (2004)

    CAS  PubMed  Google Scholar 

  87. Hirono, M., Denis, C. S., Richardson, G. P. & Gillespie, P. G. Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44, 309–320 (2004)

    CAS  PubMed  Google Scholar 

  88. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003)

    CAS  PubMed  Google Scholar 

  89. Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004)

    ADS  CAS  PubMed  Google Scholar 

  90. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004)

    CAS  PubMed  Google Scholar 

  91. Palmer, C. P. et al. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane. Proc. Natl Acad. Sci. USA 98, 7801–7805 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, X. L. et al. The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc. Natl Acad. Sci. USA 100, 7105–7110 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Denis, V. & Cyert, M. S. Internal Ca(2 + ) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J. Cell Biol. 156, 29–34 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou, X.-L., Loukin, S. H., Coria, R., Kung, C. & Saimi, Y. Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo. Eur. Biophys. J. 34, 413–422 (2005)

    CAS  PubMed  Google Scholar 

  95. Kung, C., Saimi, Y. & Martinac, B. Current Topics in Membranes and Transport 145–153 (Academic, New York, 1990)

    Google Scholar 

  96. Apostle, H. G. Aristotle's On The Soul (De Anima) (Translation) 42–43 (Peripatetic, Crinnell, Iowa, 1981)

    Google Scholar 

  97. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003)

    ADS  CAS  PubMed  Google Scholar 

  98. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004)

    ADS  CAS  PubMed  Google Scholar 

  99. Corey, D. P. & Sotomayor, M. Hearing: tightrope act. Nature 428, 901–903 (2004)

    ADS  CAS  PubMed  Google Scholar 

  100. Kung, C. in Evolution of the First Nervous Systems (ed. Anderson, P. A. V.) 203–214 (Plenum, New York, 1990)

    Google Scholar 

Download references

Acknowledgements

I thank A. Anishkin, M. Chalfie, R. Fettiplace, W. J. Haynes, S. Loukin, B. Martinac, Y. Saimi, A. O. W. Stretton and X.-L. Zhou for discussions and criticisms. My laboratory is supported by the Vilas Trust of the University of Wisconsin and by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Kung.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005). https://doi.org/10.1038/nature03896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03896

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing