Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement

Abstract

Voltage-gated ion channels are responsible for generating electrical impulses in nerves and other excitable cells. The fourth transmembrane helix (S4) in voltage-gated channels is the primary voltage-sensing unit that mediates the response to a changing membrane electric field1,2. The molecular mechanism of voltage sensing, particularly with respect to the magnitude of the transmembrane movement of S4, remains controversial3,4,5. To determine the extent of this transmembrane movement, we use fluorescent resonance energy transfer between the S4 domain and a reference point in the lipid bilayer. The lipophilic ion dipicrylamine distributes on either side of the lipid bilayer depending on the membrane potential, and is used here as a resonance-energy-transfer acceptor from donor molecules attached to several positions in the Shaker K+ channel. A voltage-driven transmembrane movement of the donor should produce a transient fluorescence change because the acceptor also translocates as a function of voltage. In Shaker K+ channels no such transient fluorescence is observed, indicating that the S4 segment does not translocate across the lipid bilayer. Based on these observations, we propose a molecular model of voltage gating that can account for the observed 13e gating charge with limited transmembrane S4 movement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Voltage-dependent FRET between dipicrylamine and model membrane probes.
Figure 2: FRET measurements between labelled Shaker potassium channel and dipicrylamine.
Figure 3: Molecular model of voltage-gating in Shaker potassium channel.

References

  1. 1

    Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    CAS  Article  Google Scholar 

  2. 2

    Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    CAS  Article  Google Scholar 

  3. 3

    Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Ahern, C. A. & Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27, 303–307 (2004)

    CAS  Article  Google Scholar 

  5. 5

    Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K(+ ) channel. Nature 423, 42–48 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Guy, H. R. & Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl Acad. Sci. USA 83, 508–512 (1986)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Catterall, W. A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985 (1986)

    CAS  Article  Google Scholar 

  8. 8

    Jiang, Y. et al. X-ray structure of a voltage-dependent K(+ ) channel. Nature 423, 33–41 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Yang, N., George, A. L. Jr & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996)

    Article  Google Scholar 

  10. 10

    Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996)

    CAS  Article  Google Scholar 

  11. 11

    Starace, D. M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19, 1319–1327 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Cha, A., Snyder, G. E., Selvin, P. R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S. & Isacoff, E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37, 85–97 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Gonzalez, J. E. & Tsien, R. Y. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272–1280 (1995)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Tosteson, M. T. & Tosteson, D. C. The sting. Melittin forms channels in lipid bilayers. Biophys. J. 36, 109–116 (1981)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kempf, C. et al. Voltage-dependent trans-bilayer orientation of melittin. J. Biol. Chem. 257, 2469–2476 (1982)

    CAS  PubMed  Google Scholar 

  19. 19

    Laine, M. et al. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467–481 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Islas, L. D. & Sigworth, F. J. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117, 69–89 (2001)

    CAS  Article  Google Scholar 

  21. 21

    Roux, B. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73, 2980–2989 (1997)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Boland, L. M., Jurman, M. E. & Yellen, G. Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys. J. 66, 694–699 (1994)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Chanda, B. & Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629–645 (2002)

    CAS  Article  Google Scholar 

  25. 25

    Cha, A. & Bezanilla, F. Structural implications of fluorescence quenching in the Shaker K+ channel. J. Gen. Physiol. 112, 391–408 (1998)

    CAS  Article  Google Scholar 

  26. 26

    Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0Å resolution. Nature 414, 43–48 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Gonzalez, C., Rosenman, E., Bezanilla, F., Alvarez, O. & Latorre, R. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker. Proc. Natl Acad. Sci. USA 98, 9617–9623 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)

    CAS  Article  Google Scholar 

  29. 29

    Nina, M., Beglov, D. & Roux, B. Atomic Born radii for continuum electrostatic calculations based on molecular dynamics free energy simulations. J. Phys. Chem. B 101, 5239–5248 (1997)

    CAS  Article  Google Scholar 

  30. 30

    Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 7 July 2005 (doi:10.1126/science.1116269)

Download references

Acknowledgements

We thank M. J. Hahn for technical assistance, M. Holmgren for the cysteine-less Shaker clone, W. Hubell for the gift of dipicrylamine and the members of Bezanilla and Correa laboratories for their comments. This work was supported by funds from an AHA postdoctoral fellowship to B.C., NRSA funding to O.K.A, DFG funding to R.B. and an NIH grant to F.B.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco Bezanilla.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

The kinetics and profile of different FRET signals are explained and discussed in detail. Theoretical background and case studies are provided. This file also contains Supplementary Figure Legends. (DOC 48 kb)

Supplementary Figures

This file contains Supplementary Figures S1–S6. Text to accompany these figures is found in the Supplementary Discussion. (PPT 780 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chanda, B., Kwame Asamoah, O., Blunck, R. et al. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436, 852–856 (2005). https://doi.org/10.1038/nature03888

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing