Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local translation of RhoA regulates growth cone collapse

Abstract

Neuronal development requires highly coordinated regulation of the cytoskeleton within the developing axon. This dynamic regulation manifests itself in axonal branching, turning and pathfinding, presynaptic differentiation, and growth cone collapse and extension. Semaphorin 3A (Sema3A), a secreted guidance cue that primarily functions to repel axons from inappropriate targets, induces cytoskeletal rearrangements that result in growth cone collapse1. These effects require intra-axonal messenger RNA translation. Here we show that transcripts for RhoA, a small guanosine triphosphatase (GTPase) that regulates the actin cytoskeleton, are localized to developing axons and growth cones, and this localization is mediated by an axonal targeting element located in the RhoA 3′ untranslated region (UTR). Sema3A induces intra-axonal translation of RhoA mRNA, and this local translation of RhoA is necessary and sufficient for Sema3A-mediated growth cone collapse. These studies indicate that local RhoA translation regulates the neuronal cytoskeleton and identify a new mechanism for the regulation of RhoA signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RhoA mRNA is localized in axons and growth cones.
Figure 2: The RhoA 3′UTR contains an axonal targeting element.
Figure 3: Sema3A induces RhoA translation.
Figure 4: Sema3A activates translation of a RhoA reporter.
Figure 5: Axonal RhoA translation mediates Sema3A signalling.

Similar content being viewed by others

References

  1. Gallo, G. & Letourneau, P. C. Regulation of growth cone actin filaments by guidance cues. J. Neurobiol. 58, 92–102 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N. & Sonenberg, N. Rapamycin blocks the phosphorylation of 4E–BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dontchev, V. D. & Letourneau, P. C. Nerve growth factor and semaphorin 3A signalling pathways interact in regulating sensory neuronal growth cone motility. J. Neurosci. 22, 6659–6669 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olink-Coux, M. & Hollenbeck, P. J. Localization and active transport of mRNA in axons of sympathetic neurons in culture. J. Neurosci. 16, 1346–1358 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bassell, G. J. et al. Sorting of β-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683–696 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Tang, S. J., Meulemans, D., Vazquez, L., Colaco, N. & Schuman, E. A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron 32, 463–475 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Kohrmann, M. et al. Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kislauskis, E. H., Zhu, X. & Singer, R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J. Cell Biol. 127, 441–451 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. Raju, R., Hajjou, M., Hill, K. R., Botta, V. & Botta, S. In vivo addition of poly(A) tail and AU-rich sequences to the 3′ terminus of the Sindbis virus RNA genome: a novel 3′-end repair pathway. J. Virol. 73, 2410–2419 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tennyson, V. M. The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J. Cell Biol. 44, 62–79 (1970)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brittis, P. A., Lu, Q. & Flanagan, J. G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Eng, H., Lund, K. & Campenot, R. B. Synthesis of β-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J. Neurosci. 19, 1–9 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steward, O. & Schuman, E. M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. & Schuman, E. M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. John, B. et al. Human microRNA targets. PLoS Biology 2, e363 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, L., Yun, S. W., Seto, J., Liu, W. & Toth, M. The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 120, 1005–1017 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Aktories, K. Rho proteins: targets for bacterial toxins. Trends Microbiol. 5, 282–288 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Svitkin, Y. V., Hahn, H., Gingras, A. C., Palmenberg, A. C. & Sonenberg, N. Rapamycin and wortmannin enhance replication of a defective encephalomyocarditis virus. J. Virol. 72, 5811–5819 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fiore, R. & Puschel, A. W. The function of semaphorins during nervous system development. Front. Biosci. 8, s484–s499 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Svenningsen, A. F., Shan, W. S., Colman, D. R. & Pedraza, L. Rapid method for culturing embryonic neuron-glial cell cocultures. J. Neurosci. Res. 72, 565–573 (2003)

    Article  CAS  Google Scholar 

  28. Zheng, J. Q. et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J. Neurosci. 21, 9291–9303 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Jeromin, A., Yuan, L. L., Frick, A., Pfaffinger, P. & Johnston, D. A modified Sindbis vector for prolonged gene expression in neurons. J. Neurophysiol. 90, 2741–2745 (2003)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Schlesinger for Sindbis plasmids and N. O'Connor for advice on 3D deconvolution and axonal volume calculation. This work is supported by the National Institute of Mental Health (S.R.J.), the National Alliance for Autism Research (S.R.J.), the Charles A. Dana foundation and the Medical Scientist Training Program (E.Z.M.). A.J. is supported by D. Johnston (Baylor Medical College).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samie R. Jaffrey.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure Legends

This file contains legends for Supplementary Figures S1-S9.

Supplementary Table S1

This table contains oligonucleotide sequences used in in situ hybridization and RT-PCR.

Supplementary Figure S1

Effects of protein synthesis inhibitors on growth cone collapse in severed DRG axons.

Supplementary Figure S2

In situ hybridization against RhoA and other transcripts in DRG axons.

Supplementary Figure S3

Isolation of DRG axons using a modified Boyden chamber.

Supplementary Figure S4

Quantification of in situ hybridization signals in axons and cell bodies.

Supplementary Figure S5

Effect of increased NGF concentration on growth cone collapse.

Supplementary Figure S6

Effects of vehicle and anisomycin treatment on the RhoA reporter.

Supplementary Figure S7

Alignment of the 3′UTRs of RhoA mRNA from different species.

Supplementary Figure S8

Inhibition of growth cone collapse by C. botulinum C3 exoenzyme.

Supplementary Figure S9

Infectivity and expression levels of Sindbis-IRES virions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Hengst, U., Cox, L. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005). https://doi.org/10.1038/nature03885

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03885

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing