Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of JAK/STAT signalling components by genome-wide RNA interference


Signalling pathways mediating the transduction of information between cells are essential for development, cellular differentiation and homeostasis1. Their dysregulation is also frequently associated with human malignancies. The Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway represents one such signalling cascade whose evolutionarily conserved roles include cell proliferation and haematopoiesis2. Here we describe a systematic genome-wide survey for genes required for JAK/STAT pathway activity. Analysis of 20,026 RNA interference (RNAi)-induced phenotypes in cultured Drosophila melanogaster haemocyte-like cells identified interacting genes encoding 4 known and 86 previously uncharacterized proteins. Subsequently, cell-based epistasis experiments were used to classify these proteins on the basis of their interaction with known components of the signalling cascade. In addition to multiple human disease gene homologues, we have found the tyrosine phosphatase Ptp61F and the Drosophila homologue of BRWD3, a bromo-domain-containing protein disrupted in leukaemia3. Moreover, in vivo analysis demonstrates that disrupted dBRWD3 and overexpressed Ptp61F function as suppressors of leukaemia-like blood cell tumours. This screen represents a comprehensive identification of novel loci required for JAK/STAT signalling and provides molecular insights into an important pathway relevant for human cancer. Human homologues of identified pathway modifiers may constitute targets for therapeutic interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Genome-wide RNAi screen for JAK/STAT signalling factors.
Figure 2: Analysis of JAK/STAT activity modulators.
Figure 3: dBRWD3 functions as a JAK/STAT pathway component.
Figure 4: Ptp61F is a tumour suppressor in vivo.


  1. 1

    Brivanlou, A. H. & Darnell, J. E. Jr Signal transduction and the control of gene expression. Science 295, 813–818 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hombria, J. C. & Brown, S. The fertile field of Drosophila Jak/STAT signalling. Curr. Biol. 12, R569–R575 (2002)

    Article  Google Scholar 

  3. 3

    Kalla, C. et al. Translocation t(X;11)(q13;q23) in B-cell chronic lymphocytic leukemia disrupts two novel genes. Genes Chromosom. Cancer 42, 128–143 (2005)

    CAS  Article  Google Scholar 

  4. 4

    Binari, R. & Perrimon, N. Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 8, 300–312 (1994)

    CAS  Article  Google Scholar 

  5. 5

    Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M. & Perrimon, N. Drosophila unpaired encodes a secreted protein that activates the JAK signalling pathway. Genes Dev. 12, 3252–3263 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Hou, X. S., Melnick, M. B. & Perrimon, N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84, 411–419 (1996)

    CAS  Article  Google Scholar 

  7. 7

    Lagueux, M., Perrodou, E., Levashina, E. A., Capovilla, M. & Hoffmann, J. A. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc. Natl Acad. Sci. USA 97, 11427–11432 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signalling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711–722 (2002)

    CAS  Article  Google Scholar 

  9. 9

    Meister, M. & Lagueux, M. Drosophila blood cells. Cell. Microbiol. 5, 573–580 (2003)

    CAS  Article  Google Scholar 

  10. 10

    Mukherjee, T., Castelli-Gair Hombría, J. & Zeidler, M. P. Opposing roles for Drosophila JAK/STAT signalling during cellular proliferation. Oncogene 24, 2503–2511 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Brown, S., Hu, N. & Castelli-Gair Hombria, J. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol. 11, 1700–1705 (2001)

    CAS  Article  Google Scholar 

  12. 12

    Yan, R., Small, S., Desplan, C., Dearolf, C. R. & Darnell, J. E. Jr Identification of a Stat gene that functions in Drosophila development. Cell 84, 421–430 (1996)

    CAS  Article  Google Scholar 

  13. 13

    Karsten, P., Hader, S. & Zeidler, M. Cloning and expression of Drosophila SOCS36E and its potential regulation by the JAK/STAT pathway. Mech. Dev. 117, 343–346 (2002)

    CAS  Article  Google Scholar 

  14. 14

    Betz, A., Lampen, N., Martinek, S., Young, M. W. & Darnell, J. E. Jr A Drosophila PIAS homologue negatively regulates stat92E. Proc. Natl Acad. Sci. USA 98, 9563–9568 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Mesilaty-Gross, S., Reich, A., Motro, B. & Wides, R. The Drosophila STAM gene homolog is in a tight gene cluster, and its expression correlates to that of the adjacent gene ial. Gene 231, 173–186 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kittler, R. et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kwon, E. J. et al. Transcriptional regulation of the Drosophila raf proto-oncogene by Drosophila STAT during development and in immune response. J. Biol. Chem. 275, 19824–19830 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Sefton, L., Timmer, J. R., Zhang, Y., Beranger, F. & Cline, T. W. An extracellular activator of the Drosophila JAK/STAT pathway is a sex-determination signal element. Nature 405, 970–973 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Luo, H., Hanratty, W. P. & Dearolf, C. R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14, 1412–1420 (1995)

    CAS  Article  Google Scholar 

  24. 24

    Spradling, A. C. et al. The Berkeley Drosophila genome project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Bach, E. A., Vincent, S., Zeidler, M. P. & Perrimon, N. A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics 165, 1149–1166 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995)

    CAS  Article  Google Scholar 

  27. 27

    Yan, R., Luo, H., Darnell, J. E. Jr & Dearolf, C. R. A JAK-STAT pathway regulates wing vein formation in Drosophila. Proc. Natl Acad. Sci. USA 93, 5842–5847 (1996)

    ADS  CAS  Article  Google Scholar 

  28. 28

    McLaughlin, S. & Dixon, J. E. Alternative splicing gives rise to a nuclear protein tyrosine phosphatase in Drosophila. J. Biol. Chem. 268, 6839–6842 (1993)

    CAS  PubMed  Google Scholar 

  29. 29

    O'Shea, J. J., Pesu, M., Borie, D. C. & Changelian, P. S. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nature Rev. Drug Discov. 3, 555–564 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Levy, D. E. & Darnell, J. E. Jr Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002)

    CAS  Article  Google Scholar 

Download references


We are grateful to R. Paro for providing reagents to establish the genome-wide RNAi library. We wish to thank M. Yamayuchi and P. Karsten for the original 2 × DrafSTAT(wt) and Socs36E promoter plasmids, C. Hunter for the sid-1 plasmid, K. Bartscherer for advice and help with tissue culture experiments, T. Horn for bioinformatics support, and M. Stricker, B. Mosterman, I. Plischke and S. Häder for technical help. We thank H. Jäckle, S. Cohen, M. Osborn, R. Paro and N. Pelte for comments on the manuscript. P.M. was supported by a fellowship from the German National Academic Foundation (Studienstiftung). Research in M.B. and M.P.Z. laboratories was supported in part by Emmy-Noether grants from the Deutsche Forschungsgemeinschaft.Author Contributions This work has been a collaborative effort between the groups of M.B. and M.P.Z.; the Boutros laboratory contributing the functional genomic expertise to dissect signalling pathways and the Zeidler laboratory expertise working with JAK/STAT signalling.

Author information



Corresponding authors

Correspondence to Martin P. Zeidler or Michael Boutros.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Description of Supplementary Methods including: constructs and pathway reporter; genome-wide RNAi library; high-throughput RNAi screening; computational analysis; Sequence analysis; epistasis experiments and Ptp61F phenotype in cells; and genetics This file also contains additional references and Supplementary Figure Legends. (DOC 196 kb)

Supplementary Tables

Supplementary Table S1–S7. (PDF 428 kb)

Supplementary Figure S1

Overview of primary RNAi screen data. (PDF 1361 kb)

Supplementary Figure S2

Loss of JAK/STAT pathway components and hopTuml induced tumour formation. (PDF 451 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Müller, P., Kuttenkeuler, D., Gesellchen, V. et al. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436, 871–875 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing