Seismic resurfacing by a single impact on the asteroid 433 Eros

Article metrics

Abstract

Impact cratering creates a wide range of topography on small satellites and asteroids. The population of visible craters evolves with impacts, and because there are no competing endogenic processes to modify the surface, determining the various ways younger craters add to or subtract from the population is a fundamental aspect of small-body geology1,2. Asteroid 433 Eros, the most closely studied small body, has regions of substantially different crater densities3,4,5 that remain unexplained. Here we show that the formation of a relatively young crater (7.6 km in diameter) resulted in the removal of other craters as large as 0.5 km over nearly 40 per cent of the asteroid. Burial by ejecta cannot explain the observed pattern of crater removal. The limitation of reduced crater density to a zone within a particular straight-line distance through the asteroid from the centre of the large crater suggests degradation of the topography by seismic energy6 released during the impact. Our observations indicate that the interior of Eros is sufficiently cohesive to transmit seismic energy over many kilometres, and the outer several tens of metres of the asteroid must be composed of relatively non-cohesive material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crater densities and other surface characteristics of Eros.
Figure 2: Transition between regions of different crater density.
Figure 3: Summary statistics of crater densities.

References

  1. 1

    Chapman, C. R. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R.) 315–330 (Univ. Arizona Press, Tucson, 2002)

  2. 2

    Sullivan, R., Thomas, P. C., Murchie, S. L. & Robinson, M. S. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R.) 331–350 (Univ. Arizona Press, Tucson, 2002)

  3. 3

    Bethoud, M., Thomas, P. & Veverka, J. Eros: Crater densities in three major impact features. Bull Am. Astron. Soc. 33, 1149 (2001)

  4. 4

    Berthoud, M., Veverka, J. & Thomas, P. C. Crater distribution and erasure on asteroid 433 Eros. Icarus (submitted)

  5. 5

    Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. L. & Wilcox, B. B. The geology of Eros. Meteorit. Planet. Sci. 37, 1651–1684 (2002)

  6. 6

    Greenberg, R., Nolan, M. C., Bottke, W. F. & Kolvoord, R. Collisional history of Gaspra. Icarus 107, 84–97 (1994)

  7. 7

    Dobrovolskis, A. R. & Burns, J. A. Life near the Roche limit: Behavior of ejecta from satellites close to planets. Icarus 42, 422–441 (1980)

  8. 8

    Thomas, P. C. Ejecta emplacement on the martian satellites. Icarus 131, 78–106 (1998)

  9. 9

    Korycansky, D. G. & Asphaug, E. Simulations of impact ejecta and regolith accumulation on asteroid Eros. Icarus 171, 110–119 (2004)

  10. 10

    Geissler, P. et al. Erosion and ejecta reaccretion on 243 Ida and its moon. Icarus 120, 140–157 (1996)

  11. 11

    Greenberg, R. et al. Collisional and dynamical history of Ida. Icarus 120, 106–118 (1996)

  12. 12

    Richardson, J. E., Melosh, H. J. & Greenberg, R. Impact-induced seismic activity on asteroid 433 Eros: A surface modification process. Science 306, 1526–1529 (2004)

  13. 13

    Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184 (1996)

  14. 14

    Chapman, C. R. et al. Impact history of Eros: Craters and boulder. Icarus 155, 104–118 (2002)

  15. 15

    Arvidson, R. E. et al. Crater Analysis Techniques Working Group Standard techniques for presentation and analysis of crater size frequency data. Icarus 37, 467–474 (1979)

  16. 16

    Thomas, P. C. et al. Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros. Nature 413, 394–396 (2001)

  17. 17

    Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, 1989)

  18. 18

    Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164 (1993)

  19. 19

    Nolan, M. C., Asphaug, E., Melosh, H. J. & Greenberg, R. Impact craters on asteroids: Does gravity or strength control their size? Icarus 124, 359–371 (1996)

  20. 20

    Thomas, P. C. et al. Eros: shape, topography and slope processes. Icarus 155, 18–37 (2002)

  21. 21

    Houston, W. N., Moriwaki, Y. & Chang, C. S. Downslope movement of lunar soil and rock caused by meteoroid impact. Proc. Lunar Sci. Conf. 4, 2425–2435 (1973)

  22. 22

    Cheng, A. F., Izenberg, N., Chapman, C. R. & Zuber, M. T. Ponded deposits on asteroid 433 Eros. Meteorit. Planet. Sci. 37, 1095–1105 (2002)

  23. 23

    Nolan, M. C., Asphaug, E., Greenberg, R. & Melosh, H. J. Impacts on asteroids: fragmentation, regolith transport, and disruption. Icarus 152, 1–15 (2001)

  24. 24

    Housen, K. R., Holsapple, K. A. & Voss, M. E. Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155–157 (1999)

  25. 25

    Davis, D. R. The collisional history of asteroid 253 Mathilde. Icarus 140, 49–52 (1999)

  26. 26

    Barnouin-Jha, O. et al. Preliminary impact crater dimensions on 433 Eros from the NEAR laser rangefinder and imager. Lunar Planet. Sci. 32, 1786 [CD-ROM] (Lunar and Planetary Institute, Houston, Texas, 2001)

  27. 27

    Procker, L. M. et al. Surface expressions of structural features on Eros. Icarus 155, 75–93 (2002)

  28. 28

    Thomas, P. C., Prockter, L., Robinson, M., Joseph, J. & Veverka, J. Global structure of asteroid 433 Eros. Geophys. Res. Lett. 29, doi:10.1029/2001GL014599 (2002)

  29. 29

    Veverka, J. et al. Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith. Science 292, 484–488 (2001)

Download references

Acknowledgements

This work was supported in part by the NASA Discovery Data Analysis Program. We are grateful to B. Carcich, to K. Consroe for technical help, and to M. Berthoud and J. Veverka for discussions. We also thank E. Asphaug and R. Greenberg.

Author information

Correspondence to P. C. Thomas.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, P., Robinson, M. Seismic resurfacing by a single impact on the asteroid 433 Eros. Nature 436, 366–369 (2005) doi:10.1038/nature03855

Download citation

Further reading

  • The spatial distribution of impact craters on Ryugu

    • Naoyuki Hirata
    • , Tomokatsu Morota
    • , Yuichiro Cho
    • , Masanori Kanamaru
    • , Sei-ichiro Watanabe
    • , Seiji Sugita
    • , Naru Hirata
    • , Yukio Yamamoto
    • , Rina Noguchi
    • , Yuri Shimaki
    • , Eri Tatsumi
    • , Kazuo Yoshioka
    • , Hirotaka Sawada
    • , Yasuhiro Yokota
    • , Naoya Sakatani
    • , Masahiko Hayakawa
    • , Moe Matsuoka
    • , Rie Honda
    • , Shingo Kameda
    • , Manabu Yamada
    • , Toru Kouyama
    • , Hidehiko Suzuki
    • , Chikatoshi Honda
    • , Kazunori Ogawa
    • , Yuichi Tsuda
    • , Makoto Yoshikawa
    • , Takanao Saiki
    • , Satoshi Tanaka
    • , Fuyuto Terui
    • , Satoru Nakazawa
    • , Shota Kikuchi
    • , Tomohiro Yamaguchi
    • , Naoko Ogawa
    • , Go Ono
    • , Yuya Mimasu
    • , Kent Yoshikawa
    • , Tadateru Takahashi
    • , Yuto Takei
    • , Atsushi Fujii
    • , Hiroshi Takeuchi
    • , Tatsuaki Okada
    • , Kei Shirai
    •  & Yu-ichi Iijima

    Icarus (2020)

  • Boulder stranding in ejecta launched by an impact generated seismic pulse

    • Esteban Wright
    • , Alice C. Quillen
    • , Juliana South
    • , Randal C. Nelson
    • , Paul Sánchez
    • , Larkin Martini
    • , Stephen R. Schwartz
    • , Miki Nakajima
    •  & Erik Asphaug

    Icarus (2020)

  • Cohesive regolith on fast rotating asteroids

    • Paul Sánchez
    •  & Daniel J. Scheeres

    Icarus (2020)

  • Seismology on small planetary bodies by orbital laser Doppler vibrometry

    • Paul Sava
    •  & Erik Asphaug

    Advances in Space Research (2019)

  • Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface

    • K. J. Walsh
    • , E. R. Jawin
    • , R.-L. Ballouz
    • , O. S. Barnouin
    • , E. B. Bierhaus
    • , H. C. Connolly
    • , J. L. Molaro
    • , T. J. McCoy
    • , M. Delbo’
    • , C. M. Hartzell
    • , M. Pajola
    • , S. R. Schwartz
    • , D. Trang
    • , E. Asphaug
    • , K. J. Becker
    • , C. B. Beddingfield
    • , C. A. Bennett
    • , W. F. Bottke
    • , K. N. Burke
    • , B. C. Clark
    • , M. G. Daly
    • , D. N. DellaGiustina
    • , J. P. Dworkin
    • , C. M. Elder
    • , D. R. Golish
    • , A. R. Hildebrand
    • , R. Malhotra
    • , J. Marshall
    • , P. Michel
    • , M. C. Nolan
    • , M. E. Perry
    • , B. Rizk
    • , A. Ryan
    • , S. A. Sandford
    • , D. J. Scheeres
    • , H. C. M. Susorney
    • , F. Thuillet
    •  & D. S. Lauretta

    Nature Geoscience (2019)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.