Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic control of germline sexual development is mediated by the JAK/STAT pathway


Germ cells must develop along distinct male or female paths to produce the sperm or eggs required for sexual reproduction. In both mouse and Drosophila, the sexual identity of germ cells is influenced by the sex of the surrounding somatic tissue (for example, refs 1, 2, reviewed in refs 3, 4); however, little is known about how the soma controls germline sex determination. Here we show that the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway provides a sex-specific signal from the soma to the germ line in Drosophila embryonic gonads. The somatic gonad expresses a JAK/STAT ligand, unpaired (upd), in a male-specific manner, and activates the JAK/STAT pathway in male germ cells at the time of gonad formation. Furthermore, the JAK/STAT pathway is necessary for male-specific germ cell behaviour during early gonad development, and is sufficient to activate aspects of male germ cell behaviour in female germ cells. Our findings provide direct evidence that the JAK/STAT pathway mediates a key signal from the somatic gonad that regulates male germline sexual development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The JAK/STAT pathway is activated in male germ cells.
Figure 2: The JAK/STAT pathway is activated by the male somatic gonad.
Figure 3: JAK/STAT activation regulates male-specific germ cell behaviour.

Similar content being viewed by others


  1. Steinmann-Zwicky, M., Schmid, H. & Nothiger, R. Cell-autonomous and inductive signals can determine the sex of the germ line of Drosophila by regulating the gene Sxl. Cell 57, 157–166 (1989)

    Article  CAS  Google Scholar 

  2. McLaren, A. The fate of germ cells in the testis of fetal Sex-reversed mice. J. Reprod. Fertil. 61, 461–467 (1981)

    Article  CAS  Google Scholar 

  3. Oliver, B. Genetic control of germline sexual dimorphism in Drosophila. Int. Rev. Cytol. 219, 1–60 (2002)

    Article  CAS  Google Scholar 

  4. McLaren, A. Primordial germ cells in the mouse. Dev. Biol. 262, 1–15 (2003)

    Article  CAS  Google Scholar 

  5. Hou, S. X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell 3, 765–778 (2002)

    Article  CAS  Google Scholar 

  6. Ichiba, M., Nakajima, K., Yamanaka, Y., Kiuchi, N. & Hirano, T. Autoregulation of the Stat3 gene through cooperation with a cAMP-responsive element-binding protein. J. Biol. Chem. 273, 6132–6138 (1998)

    Article  CAS  Google Scholar 

  7. Callus, B. A. & Mathey-Prevot, B. SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc. Oncogene 21, 4812–4821 (2002)

    Article  CAS  Google Scholar 

  8. Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995)

    Article  CAS  Google Scholar 

  9. Li, J., Xia, F. & Li, W. X. Coactivation of STAT and Ras is required for germ cell proliferation and invasive migration in Drosophila. Dev. Cell 5, 787–798 (2003)

    Article  CAS  Google Scholar 

  10. Boyle, M., Bonini, N. & DiNardo, S. Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 124, 971–982 (1997)

    CAS  PubMed  Google Scholar 

  11. Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y. & Howard, K. The Drosophila protein Wunen repels migrating germ cells. Nature 385, 64–67 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Van Doren, M., Broihier, H. T., Moore, L. A. & Lehmann, R. HMG-CoA reductase guides migrating primordial germ cells. Nature 396, 466–469 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Nagoshi, R. N. & Baker, B. S. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev. 4, 89–97 (1990)

    Article  CAS  Google Scholar 

  14. Schupbach, T. Autosomal mutations that interfere with sex determination in somatic cells of Drosophila have no direct effect on the germline. Dev. Biol. 89, 117–127 (1982)

    Article  CAS  Google Scholar 

  15. Agaisse, H., Petersen, U. M., Boutros, M., Mathey-Prevot, B. & Perrimon, N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell 5, 441–450 (2003)

    Article  CAS  Google Scholar 

  16. Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M. & Perrimon, N. Drosophila unpaired encodes a secreted protein that activates the JAK signalling pathway. Genes Dev. 12, 3252–3263 (1998)

    Article  CAS  Google Scholar 

  17. Jinks, T. M., Polydorides, A. D., Calhoun, G. & Schedl, P. The JAK/STAT signalling pathway is required for the initial choice of sexual identity in Drosophila melanogaster. Mol. Cell 5, 581–587 (2000)

    Article  CAS  Google Scholar 

  18. Sefton, L., Timmer, J. R., Zhang, Y., Beranger, F. & Cline, T. W. An extracellular activator of the Drosophila JAK/STAT pathway is a sex-determination signal element. Nature 405, 970–973 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signalling. Science 294, 2546–2549 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Kiger, A. A., Jones, D. L., Schultz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Sonnenblick, B. P. Germ cell movements and sex differentiation of the gonads in the Drosophila embryo. Proc. Natl Acad. Sci. USA 26, 373–381 (1941)

    Article  ADS  Google Scholar 

  22. Asaoka-Taguchi, M., Yamada, M., Nakamura, A., Hanyu, K. & Kobayashi, S. Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nature Cell Biol. 1, 431–437 (1999)

    Article  CAS  Google Scholar 

  23. Kerkis, J. The growth of the gonads in Drosophila melanogaster. Genetics 16, 212–244 (1931)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Staab, S., Heller, A. & Steinmann-Zwicky, M. Somatic sex-determining signals act on XX germ cells in Drosophila embryos. Development 122, 4065–4071 (1996)

    CAS  PubMed  Google Scholar 

  25. Janzer, B. & Steinmann-Zwicky, M. Cell-autonomous and somatic signals control sex-specific gene expression in XY germ cells of Drosophila. Mech. Dev. 100, 3–13 (2001)

    Article  CAS  Google Scholar 

  26. Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998)

    Article  CAS  Google Scholar 

  27. DeFalco, T. J. et al. Sex-specific apoptosis regulates sexual dimorphism in the Drosophila embryonic gonad. Dev. Cell 5, 205–216 (2003)

    Article  CAS  Google Scholar 

  28. Patel, N. in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology (eds Goldstein, L. S. B. & Fyrberg, E. A.) 445–487 (Academic Press, San Diego, 1994)

    Google Scholar 

  29. Moore, L. A., Broihier, H. T., Van Doren, M., Lunsford, L. B. & Lehmann, R. Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development 125, 667–678 (1998)

    CAS  PubMed  Google Scholar 

  30. Campos-Ortega, J. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, New York, 1985)

    Book  Google Scholar 

Download references


We acknowledge our colleagues who have provided essential reagents for this work, as indicated in the Methods, either directly or through their contributions to the Bloomington Stock Center or Developmental Studies Hybridoma Bank. Owing to size constraints, we apologise for being unable to cite primary references in several instances. We thank M. McCaffery and the JHU Integrated Imaging Center for providing essential microscopy resources. We are grateful to B. Oliver for discussions, and to A. Spradling and members of the Van Doren laboratory for comments on the manuscript. This work was supported by an NRSA postdoctoral fellowship (M.W.), the ARCS Foundation (A.M.) and NIH Grants (M.V.D.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark Van Doren.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wawersik, M., Milutinovich, A., Casper, A. et al. Somatic control of germline sexual development is mediated by the JAK/STAT pathway. Nature 436, 563–567 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing