Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of electron dynamics in the attosecond domain

Abstract

Dynamical processes are commonly investigated using laser pump–probe experiments, with a pump pulse exciting the system of interest and a second probe pulse tracking its temporal evolution as a function of the delay between the pulses1,2,3,4,5,6. Because the time resolution attainable in such experiments depends on the temporal definition of the laser pulses, pulse compression to 200 attoseconds (1 as = 10-18 s) is a promising recent development. These ultrafast pulses have been fully characterized7, and used to directly measure light waves8 and electronic relaxation in free atoms2,3,4. But attosecond pulses can only be realized in the extreme ultraviolet and X-ray regime; in contrast, the optical laser pulses typically used for experiments on complex systems last several femtoseconds (1 fs = 10-15 s)1,5,6. Here we monitor the dynamics of ultrafast electron transfer—a process important in photo- and electrochemistry and used in solid-state solar cells, molecular electronics and single-electron devices—on attosecond timescales using core-hole spectroscopy. We push the method, which uses the lifetime of a core electron hole as an internal reference clock for following dynamic processes9,10,11,12,13,14,15,16,17,18,19, into the attosecond regime by focusing on short-lived holes with initial and final states in the same electronic shell. This allows us to show that electron transfer from an adsorbed sulphur atom to a ruthenium surface proceeds in about 320 as.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core-hole clock spectroscopy—schematic overview.
Figure 2: Core-hole clock spectroscopy—the spectroscopic signatures.
Figure 3: Quantitative charge transfer analysis of sulphur L1L2/3M1/2/3 Coster–Kronig autoionization spectra of c(4 × 2)S/Ru(0001) as a function of photon energy.
Figure 4: Theoretical charge transfer time for S in f.c.c. and h.c.p. hollow sites computed as S 3 p resonance lifetime.

Similar content being viewed by others

References

  1. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond (adapted from the Nobel lecture). J. Phys. Chem. A 104, 5660–5694 (2000)

    Article  CAS  Google Scholar 

  2. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–625 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999)

    Article  CAS  Google Scholar 

  6. Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Björneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Martensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett. 68, 1892–1895 (1992)

    Article  ADS  Google Scholar 

  10. Ohno, M. Deexcitation processes in adsorbates. Phys. Rev. B 50, 2566–2575 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Björneholm, O. et al. Femtosecond dissociation of core-excited HCl monitored by frequency detuning. Phys. Rev. Lett. 79, 3150–3153 (1997)

    Article  ADS  Google Scholar 

  12. Keller, C. et al. Ultrafast charge transfer times of chemisorbed species from Auger resonant Raman studies. Phys. Rev. Lett. 80, 1774–1777 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Keller, C. et al. Femtosecond dynamics of adsorbate charge-transfer processes as probed by high-resolution core-level spectroscopy. Phys. Rev. B 57, 11951–11954 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Feifel, R. et al. Observation of a continuum-continuum interference hole in ultrafast dissociating core-excited molecules. Phys. Rev. Lett. 85, 3133–3136 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Wurth, W. & Menzel, D. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy. Chem. Phys. 251, 141–149 (2000)

    Article  CAS  Google Scholar 

  16. Brühwiler, P. A., Karis, O. & Mårtensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703–740 (2002)

    Article  ADS  Google Scholar 

  17. Schnadt, J. et al. Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature 418, 620–623 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Föhlisch, A. et al. Energy dependence of resonant charge transfer from adsorbates to metal substrates. Chem. Phys. 289, 107–115 (2003)

    Article  Google Scholar 

  19. Keller, C. et al. Electronic transfer processes studied at different time scales by selective resonant core hole excitation of adsorbed molecules. Appl. Phys. A 78, 125–129 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Coville, M. & Thomas, T. D. Molecular effects on inner-shell lifetimes: Possible test of the one-center model of Auger decay. Phys. Rev. A 43, 6053–6056 (1991)

    Article  ADS  CAS  Google Scholar 

  21. Schwennicke, C., Jürgens, D., Held, G. & Pfnür, H. The structure of dense sulphur layers on Ru(0001) I. The c(2x4) structure. Surf. Sci. 316, 81–91 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Jürgens, D., Schwennicke, C. & Pfnür, H. Surface structure analysis of the domain-wall phase of S/Ru(0001) using an efficient parameter optimization method. Surf. Sci. 381, 174–189 (1997)

    Article  ADS  Google Scholar 

  23. Krause, M. O. & Oliver, J. H. Natural widths of atomic K and L levels, K alpha X-ray lines and several KLL auger lines. J. Phys. Chem. Ref. Data 8, 329–338 (1979)

    Article  ADS  CAS  Google Scholar 

  24. Sánchez-Portal, D., Artacho, E., Ordejón, P. & Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quant. Chem. 65, 453–461 (1997)

    Article  Google Scholar 

  25. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Borisov, A. G., Kazansky, A. K. & Gauyacq, J. P. Resonant charge transfer in ion–metal surface collisions: Effect of a projected band gap in the H-Cu(111) system. Phys. Rev. B 59, 10935–10949 (1999)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the staff of MAX-lab, Lund, Sweden, in particular J. N. Andersen and the ARI program. This work was supported by the Deutsche Forschungsgemeinschaft under Schwerpunktprogramm 1093 “Dynamik von Elektronentransferprozessen an Grenzflächen”, the Basque Departamento de Educación, the University of the Basque Country, the Spanish MEC, European Network of Excellence NANOQUANTA, and Max-Planck Awards for Scientific Cooperation to P.M.E. and D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wurth.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Föhlisch, A., Feulner, P., Hennies, F. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005). https://doi.org/10.1038/nature03833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03833

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing