Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Young chondrules in CB chondrites from a giant impact in the early Solar System

Abstract

Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves1,2) in the protoplanetary disk around the early Sun. The ages of primitive chondrules3,4,5,6 in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 ± 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars7. Here we report the 207Pb–206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 ± 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 ± 0.9 Myr), which formed during a single-stage, highly energetic event8,9,10,11. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave2. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour–melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CB carbonaceous chondrites Hammadah al Hamra 237 (HH 237) and Gujba.
Figure 2: 204 Pb/ 206 Pb– 207 Pb/ 206 Pb isochron diagram for three Gujba chondrules (numbers 3, 4 and 5).

Similar content being viewed by others

References

  1. Scott, E. R. D. & Krot, A. N. in Meteorites, Comets, and Planets (ed. Davis, A. M.) Vol. 1 Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 327–334 (Cambridge Univ. Press, Cambridge, 2003)

    Google Scholar 

  2. Desch, S. J. & Connolly, H. C. Jr. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Bizzarro, M., Baker, J. A. & Haack, H. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431, 275–278 (2004)

    Article  ADS  CAS  Google Scholar 

  5. McKeegan, K. D. & Davis, A. M. in Meteorites, Comets, and Planets (ed. Davis, A. M.) Vol. 1 Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 431–461 (Cambridge Univ. Press, Cambridge, 2003)

    Google Scholar 

  6. Kita, N., et al. in Chondrites and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) (Astrophysical Society of the Pacific, in the press)

  7. Hartmann, L. in Chondrites and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) (Astrophysical Society of the Pacific, in the press)

  8. Krot, A. N. et al. A new astrophysical setting for chondrule formation. Science 291, 1776–1779 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Rubin, A. E. et al. Formation of metal and silicate globules in Gujba: A new Bencubbin-like meteorite fall. Geochim. Cosmochim. Acta 67, 3283–3298 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Krot, A. N., Amelin, Y., Russell, S. S. & Twelker, E. Are chondrules in the CB carbonaceous chondrite Gujba primary (nebular) or secondary (asteroidal)? Meteorit. Planet. Sci. 39, A56 (2004)

    Google Scholar 

  11. Meibom, A. J. et al. Large scale thermal events in the solar nebula recorded in Fe,Ni metal condensates in primitive meteorites. Science 288, 839–841 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Chambers, J. E. & Wetherill, G. W. Planets in the asteroid belt. Meteorit. Planet. Sci. 36, 381–399 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Jones, R. H., Lee, T., Connolly, H. C. Jr, Love, S. G. & Shang, H. in Protostars and Planets IV (eds Manning, V., Boss, A. P. & Russell, S. S.) 927–962 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  14. Boss, A. P. & Durisen, R. H. in Chondrites and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) (Astrophysical Society of the Pacific, in the press)

  15. Wood, J. A. On the formation of meteoritic chondrules by aerodynamic drag heating in the solar nebula. Earth Planet. Sci. Lett. 70, 11–26 (1984)

    Article  ADS  Google Scholar 

  16. Boss, A. P. & Graham, J. A. Clumpy disk accretion and chondrule formation. Icarus 106, 168–178 (1993)

    Article  ADS  Google Scholar 

  17. Weidenschilling, S. J., Marzari, F. & Hood, L. L. The origin of chondrules and jovian resonances. Science 279, 681–684 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Wood, J. A. Processing of chondritic and planetary materials in spiral density waves in the nebula. Meteorit. Planet. Sci. 31, 641–645 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Nakamoto, T., Hayashi, M. R., Kita, N. T. & Tachibana, S. in Chondrites and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) (Astrophysical Society of the Pacific, in the press)

  20. Weisberg, M. K. et al. A new metal-rich chondrite group. Meteorit. Planet. Sci. 36, 401–418 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Petaev, M. I., Meibom, A., Krot, A. N., Wood, J. A. & Keil, K. The condensation origin of zoned metal grains in Queen Alexandra Range 94411: Implications for the formation of the Bencubbin-like chondrites. Meteorit. Planet. Sci. 36, 93–106 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Campbell, A. J., Humayun, M., Meibom, A. J., Krot, A. N. & Keil, K. Origin of zoned metal grains in the QUE94411 chondrite. Geochim. Cosmochim. Acta 65, 163–180 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Alexander, C. M. O'D. & Hewins, R. H. Mass fractionation of Fe and Ni isotopes in metal in Hammadah al Hamra 237. Meteorit. Planet. Sci. 39, A13 (2004)

    Google Scholar 

  24. Campbell, A. J., Humayun, M. & Weisberg, M. K. Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochim. Cosmochim. Acta 66, 647–660 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Kleine, T., Mezger, K., Palme, H., Scherer, E. & Münker, C. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochim. Cosmochim. Acta (submitted)

  26. Melosh, H. J., Cassen, P., Sears, D. & Lugmair, G. in Workshop on Chondrites and the Protoplanetary Disk (eds Krot, A. N., Reipurth, B. & Scott, E. R. D.) 125–126 (Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, 2004)

    Google Scholar 

  27. Wetherill, G. W. & Stewart, G. Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190–209 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Chambers, J. E. & Cassen, P. The effects of nebula surface density profile and giant-planet eccentricities on planetary accretion in the inner solar system. Meteorit. Planet. Sci. 37, 1523–1540 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Kleine, T., Mezger, K. & Palme, H. The Hf-W age of the lunar magma ocean. Lunar Planet. Sci. XXXVI, 1940 (2005)

    ADS  Google Scholar 

  30. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by NASA (A.N.K., P.C.) and the Canadian Space Agency (Y.A.). We thank J. A. Wood for comments and suggestions, and E. Twelker for providing samples and images of Gujba and Hammadah al Hamra 237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Krot.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This includes Supplementary Figure Legends, Supplementary Methods and Supplementary Table S1.

Supplementary Figure S1

Polished slabs of Gujba and Hammadah al Hamra 237.

Supplementary Figure 2

Backscattered electron images of chondrules in the Gujba meteorite.

Supplementary Figure 3

Backscattered electron images of inter-chondrule material in the Gujba meteorite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krot, A., Amelin, Y., Cassen, P. et al. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989–992 (2005). https://doi.org/10.1038/nature03830

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03830

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing