Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides

A Retraction to this article was published on 13 October 2005


The mechanism of high-transition-temperature (high-Tc) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order1,2, but the relationship between the two states in the intervening ‘pseudogap’ regime has become a central puzzle3. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides4,5 that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Magnetization and electronic transport measurements for RuSr2R1.1Ce0.9Cu2O10.
Figure 2: Magnetic order in RuSr 2 Nd 0.9 Y 0.2 Ce 0.9 Cu 2 O 10 at low temperatures.
Figure 3: Temperature variation of the RuSr 2 Nd 0.9 Y 0.2 Ce 0.9 Cu 2 O 10 structure, revealing negative thermal expansion below the T Ru = 140 K Ru spin ordering temperature.


  1. Kang, H. J. et al. Antiferromagnetic order as the competing ground state in electron-doped Nd1.85Ce0.15CuO4 . Nature 423, 522–525 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–654 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Felner, I., Asaf, U., Levi, Y. & Millo, O. Coexistence of magnetism and superconductivity in R1.4Ce0.6RuSr2Cu2O10-delta (R = Eu and Gd). Phys. Rev. B 55, R3374–R3377 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Noce, C. & Vecchione, A., Cuoco, M. & Romano, A. (eds) Ruthenate and Rutheno-Cuprate Materials (Springer, Berlin, 2002)

  6. Bernhard, C. et al. Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization. Phys. Rev. B 59, 14099–14107 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Lynn, J. W., Keimer, B., Ulrich, C., Bernhard, C. & Tallon, J. L. Antiferromagnetic ordering of Ru and Gd in superconducting RuSr2GdCu2O8 . Phys. Rev. B 61, 14964–14967 (2000)

    Article  ADS  Google Scholar 

  8. van Schilfgaarde, M., Abrikosov, I. A. & Johansson, B. Origin of the Invar effect in iron-nickel alloys. Nature 400, 46–49 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Kiyama, T., Yoshimura, K., Kosuge, K., Ikeda, Y. & Bando, Y. Invar effect of SrRuO3: itinerant electron magnetism of Ru 4d electrons. Phys. Rev. B 54, R756–R759 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Sleight, A. Zero-expansion plan. Nature 425, 674–676 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Arvanitidis, J., Papagelis, K., Margadonna, S., Prassides, K. & Fitch, A. N. Temperature-induced valence transition and associated lattice collapse in samarium fulleride. Nature 425, 599–602 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Salvador, J. R., Guo, F., Hogan, T. & Kanatzidis, M. G. Zero thermal expansion in YbGaGe due to an electronic valence transition. Nature 425, 702–705 (2003)

    Article  ADS  CAS  Google Scholar 

  13. McLaughlin, A. C., Attfield, J. P. & Tallon, J. L. A variable temperature structural study of the ferromagnetic superconductor RuSr2GdCu2O8 . Int. J. Inorg. Mater. 2, 95–99 (2000)

    Article  CAS  Google Scholar 

  14. Shi, L., Li, G., Fan, X. J., Feng, S. J. & Li, X.-G. Structural, transport and magnetic properties of RuSr2Sm1.4Ce0.6Cu2O10-δ . Physica C 399, 69–74 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Yanase, Y. & Yamada, K. Theory of pseudogap phenomena in high-T-c cuprates based on the strong coupling superconductivity. J. Phys. Soc. Jpn 68, 2999–3015 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Chmaissem, O., Jorgensen, J. D., Shaked, H., Dollar, P. & Tallon, J. L. Crystal and magnetic structure of ferromagnetic superconducting RuSr2GdCu2O8 . Phys. Rev. B 61, 6401–6407 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Matsukawa, M. et al. Stretched exponential behaviour in remanent lattice striction of a (La,Pr)1.2Sr1.8Mn2O7 bilayer manganite single crystal. Phys. Rev. B 70, 132402 (2004)

    Article  ADS  Google Scholar 

  19. Chen, X. H. et al. Transport properties and specific heat of RuSr2GdCu2O8 and RuSr2Gd1.4Ce0.6Cu2Oy in magnetic fields. Phys. Rev. B 63, 064506 (2001)

    Article  ADS  Google Scholar 

  20. Awana, V. P. S., Ichihara, S., Karppinen, M. & Yamauchi, H. Comparison of magneto-superconductive properties of RuSr2GdCu2O8-δ and RuSr2Gd1.5Ce0.5Cu2O10-δ . Physica C 378, 249–254 (2002)

    Article  ADS  Google Scholar 

  21. McCrone, J. E. et al. Magnetotransport properties of doped RuSr2GdCu2O8 . Phys. Rev. B 68, 064514 (2003)

    Article  ADS  Google Scholar 

  22. Ando, Y., Lavrov, A. N. & Komiya, S. Anisotropic magnetoresistance in lightly doped La2-xSrxCuO4: Impact of antiphase domain boundaries on the electron transport. Phys. Rev. Lett. 90, 247003 (2003)

    Article  ADS  Google Scholar 

  23. Lavrov, A. N. et al. Spin-flop transition and the anisotropic magnetoresistance of Pr1.3-xLa0.7CexCuO4: unexpectedly strong spin-charge coupling in the electron-doped cuprates. Phys. Rev. Lett. 92, 227003 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Rao, C. N. R. & Raveau, B. (eds) Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (World Scientific, Singapore, 1998)

  25. Tokura, Y. (ed.) Colossal Magnetoresistive Oxides (Gordon and Breach Science, New York, 2000)

  26. Kobayashi, K. L., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Cuk, T. et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . Phys. Rev. Lett. 93, 117003 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Mclaughlin, A. C., Zhou, W., Attfield, J. P., Fitch, A. N. & Tallon, J. L. The structure and microstructure of the ferromagnetic superconductor RuSr2GdCu2O8 . Phys. Rev. B 60, 7512–7516 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Mclaughlin, A. C., Attfield, J. P., Asaf, U. & Felner, I. Chemical control of hole-doped superconductivity and magnetism in Gd2-xCexRuSr2Cu2O10-δ . Phys. Rev. B 68, 014503 (2003)

    Article  ADS  Google Scholar 

Download references


We thank P. Littlewood, P. Monthoux and N. Mathur for discussions, and P. Henry and E. Suard for assistance with the neutron experiments. We also acknowledge the Royal Society of Edinburgh for a SEELLD research fellowship (A.C.M.), the Ministry of Science and Technology, Government of Pakistan for a studentship (F.S.), and the UK EPSRC for beam time provision and financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. P. Attfield.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Tables

Two tables containing refinement parameters and derived quantities such as bond distances for RuSr2Nd0.9 Ce0.9Y0.2Cu2O10, from slow warming neutron diffraction data at temperatures from 4 to 290 K. (DOC 37 kb)

Supplementary Figures

Figures S1-S6, showing profile fits and magnetic peak variations from the neutron diffraction analysis of RuSr2Nd0.9 Ce0.9Y0.2Cu2O10 and other ruthenocuprates; also magnetisation and magneto-transport data for RuSr2Nd0.9 Ce0.9Y0.2Cu2O10. (DOC 968 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mclaughlin, A., Sher, F. & Attfield, J. Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides. Nature 436, 829–832 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing