Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The ‘solar model problem’ solved by the abundance of neon in nearby stars

Abstract

The interior structure of the Sun can be studied with great accuracy using observations of its oscillations, similar to seismology of the Earth. Precise agreement between helioseismological measurements and predictions of theoretical solar models1 has been a triumph of modern astrophysics. A recent downward revision by 25–35 per cent of the solar abundances of light elements such as C, N, O and Ne (ref. 2) has, however, broken this accordance: models adopting the new abundances incorrectly predict the depth of the convection zone, the depth profiles of sound speed and density, and the helium abundance1,3. The discrepancies are far beyond the uncertainties in either the data or the model predictions4. Here we report neon-to-oxygen ratios measured in a sample of nearby solar-like stars, using their X-ray spectra. The abundance ratios are all very similar and substantially larger than the recently revised solar value. The neon abundance in the Sun is quite poorly determined. If the Ne/O abundance in these stars is adopted for the Sun, the models are brought back into agreement with helioseismology measurements5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Chandra Medium Energy Grating X-ray spectrum of the M1 V star AU Mic.
Figure 2: Derived Ne/O abundance ratios by number, ANe/AO, versus the coronal activity index LX/Lbol.
Figure 3: The temperature-insensitive O/Ne emissivity ratio.

Similar content being viewed by others

References

  1. Bahcall, J. N., Basu, S., Pinsonneault, M. & Serenelli, A. M. Helioseismological implications of recent solar abundance determinations. Astrophys. J. 618, 1049–1056 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Asplund, M., Grevesse, N., Sauval, J. The solar chemical composition. Preprint at http://arxiv.org/abs/astro-ph/0410214 (2004).

  3. Basu, S. & Antia, H. M. Constraining solar abundances using helioseismology. Astrophys. J. Lett. 606, L85–L88 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Bahcall, J. N., Serenelli, A. M. & Basu, S. New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys. J. Lett. 621, L85–L88 (2005)

    Article  ADS  Google Scholar 

  5. Antia, H. M. & Basu, S. The discrepancy between solar abundances and helioseismology. Astrophys. J. Lett. 620, L129–L132 (2005)

    Article  ADS  Google Scholar 

  6. Bahcall, J. N., Basu, S., Serenelli, A. M. What is the neon abundance of the Sun? Preprint at http://arxiv.org/abs/astro-ph/0502563 (2005).

  7. Bahcall, J. N., Serenelli, A. M. & Pinsonneault, M. How accurately can we calculate the depth of the solar convective zone? Astrophys. J. 614, 464–471 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Asplund, M., Nordlund, Å., Trampedach, R. & Stein, R. F. Line formation in solar granulation II. The photospheric Fe abundance. Astron. Astrophys. 359, 743–754 (2000)

    ADS  CAS  Google Scholar 

  9. Meyer, J.-P. The baseline composition of solar energetic particles. Astrophys. J. Suppl. 57, 151–171 (1985)

    Article  ADS  CAS  Google Scholar 

  10. Anders, E. & Grevesse, N. Abundances of the elements—meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Drake, J. J. et al. Enhanced noble gases in the coronae of active stars. Astrophys. J. Lett. 548, L81–L85 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Acton, L. W., Catura, R. C. & Joki, E. G. Oxygen-to-neon abundance ratio in the solar corona. Astrophys. J. Lett. 195, L93–L95 (1975)

    Article  ADS  CAS  Google Scholar 

  14. Canizares, C. R. et al. High-resolution X-ray spectra of Capella: initial results from the Chandra high-energy transmission grating spectrometer. Astrophys. J. Lett. 539, L41–L44 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Sanz-Forcada, J., Favata, F. & Micela, G. Coronal versus photospheric abundances of stars with different activity levels. Astron. Astrophys. 416, 281–290 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Feldman, U. & Laming, J. M. Element abundances in the upper atmospheres of the Sun and stars: update of observational results. Phys. Scr. 61, 222–252 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Drake, J. J. Chemical fractionation and abundances in coronal plasma. Adv. Space Res. 32, 945–954 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Güdel, M. X-ray astronomy of stellar coronae. Astron. Astrophys. Rev. 12, 71–237 (2004)

    Article  ADS  Google Scholar 

  19. Audard, M., Güdel, M., Sres, A., Raassen, A. J. J. & Mewe, R. A study of coronal abundances in RS CVn binaries. Astron. Astrophys. 398, 1137–1149 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Schmelz, J. T., Saba, J. L. R., Ghosh, D. & Strong, K. T. Anomalous coronal neon abundances in quiescent solar active regions. Astrophys. J. 473, 519–532 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Murphy, R. J., Ramaty, R., Reames, D. V. & Kozlovsky, B. Solar abundances from gamma-ray spectroscopy—comparisons with energetic particle, photospheric, and coronal abundances. Astrophys. J. 371, 793–803 (1991)

    Article  ADS  CAS  Google Scholar 

  22. Ramaty, R., Mandzhavidze, N., Kozlovsky, B. & Murphy, R. J. Solar atmospheric abundances and energy content in flare accelerated ions from gamma-ray spectroscopy. Astrophys. J. Lett. 455, L193–L196 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Schmelz, J. T. Elemental abundances of flaring solar plasma—Enhanced neon and sulfur. Astrophys. J. 408, 373–381 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Frisch, P. C. & Slavin, J. D. The chemical composition and gas-to-dust mass ratio of nearby interstellar matter. Astrophys. J. 594, 844–858 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Henry, R. B. C. & Worthey, G. The distribution of heavy elements in spiral and elliptical galaxies. Publ. Astron. Soc. Pacif. 111, 919–945 (1999)

    Article  ADS  Google Scholar 

  26. Garcia-Alvarez, D. et al. The FIP effect on late-type stellar coronae: from dwarfs to giants. Astron. Astrophys. Soc. High Energy Astrophysics Division 8, 10.03 (2004)

    ADS  Google Scholar 

  27. Ness, J., Brickhouse, N. S., Drake, J. J. & Huenemoerder, D. P. Modeling the Ne IX triplet spectral region of Capella with the Chandra and XMM-Newton gratings. Astrophys. J. 598, 1277–1289 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Kashyap, V. & Drake, J. J. PINTofALE: Package for the interactive analysis of line emission. Bull. Astron. Soc. India 28, 475–476 (2000)

    ADS  Google Scholar 

  29. Mazzotta, P., Mazzitelli, G., Colafrancesco, S. & Vittorio, N. Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. 133, 403–409 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Young, P. R. et al. CHIANTI-An atomic database for emission lines. VI. proton rates and other improvements. Astrophys. J. Suppl. 144, 135–152 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Share, R. Murphy, W. Ball and D. Garcia-Alvarez for discussions and comments. J.J.D. was supported by a NASA contract to the Chandra X-ray Center. P.T. was supported by a Chandra award issued by the Chandra X-ray Center, which is operated by SAO for and on behalf of NASA. J.J.D. thanks the NASA AISRP for providing financial assistance for the development of the PINTofALE package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Drake.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Data

A document containing a more complete list of some existing measurements of the Ne/O abundance ratio in the solar outer atmosphere, together with citations to the original sources. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drake, J., Testa, P. The ‘solar model problem’ solved by the abundance of neon in nearby stars. Nature 436, 525–528 (2005). https://doi.org/10.1038/nature03803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03803

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing