Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5

Abstract

ClC-4 and ClC-5 are members of the CLC gene family1, with ClC-5 mutated in Dent's disease2, a nephropathy associated with low-molecular-mass proteinuria and eventual renal failure. ClC-5 has been proposed to be an electrically shunting Cl- channel in early endosomes, facilitating intraluminal acidification3,4. Motivated by the discovery that certain bacterial CLC proteins are secondary active Cl-/H+ antiporters5, we hypothesized that mammalian CLC proteins might not be classical Cl- ion channels but might exhibit Cl--coupled proton transport activity. Here we report that ClC-4 and ClC-5 carry a substantial amount of protons across the plasma membrane when activated by positive voltages, as revealed by measurements of pH close to the cell surface. Both proteins are able to extrude protons against their electrochemical gradient, demonstrating secondary active transport. H+, but not Cl-, transport was abolished when a pore glutamate was mutated to alanine (E211A). ClC-0, ClC-2 and ClC-Ka proteins showed no significant proton transport. The muscle channel ClC-1 exhibited a small H+ transport that might be physiologically relevant. For ClC-5, we estimated that Cl- and H+ transport contribute about equally to the total charge movement, raising the possibility that the coupled Cl-/H+ transport of ClC-4 and ClC-5 is of significant magnitude in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acidification mediated by ClC-5.
Figure 2: Proton transport is specific for ClC-5 and is abolished by a pore mutation.
Figure 3: H + transport of other CLC proteins.

Similar content being viewed by others

References

  1. Jentsch, T. J., Poet, M., Fuhrmann, J. C. & Zdebik, A. A. Physiological functions of CLC Cl channels gleaned from human gebetic disease and mouse models. Annu. Rev. Physiol. 67, 779–807 (2005)

    Article  CAS  Google Scholar 

  2. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Piwon, N., Günther, W., Schwake, M., Bösl, M. R. & Jentsch, T. J. ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408, 369–373 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Wang, S. S. et al. Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor- mediated endocytosis. Hum. Mol. Genet. 9, 2937–2945 (2000)

    Article  CAS  Google Scholar 

  5. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427, 803–807 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Steinmeyer, K., Schwappach, B., Bens, M., Vandewalle, A. & Jentsch, T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J. Biol. Chem. 270, 31172–31177 (1995)

    Article  CAS  Google Scholar 

  7. Stobrawa, S. M. et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196 (2001)

    Article  CAS  Google Scholar 

  8. Li, X., Shimada, K., Showalter, L. A. & Weinman, S. A. Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells. J. Biol. Chem. 275, 35994–35998 (2000)

    Article  CAS  Google Scholar 

  9. Miller, C. Open-state substructure of single chloride channels from Torpedo electroplax. Phil. Trans. R. Soc. Lond. B 299, 401–411 (1982)

    Article  ADS  CAS  Google Scholar 

  10. Saviane, C., Conti, F. & Pusch, M. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J. Gen. Physiol. 113, 457–468 (1999)

    Article  CAS  Google Scholar 

  11. Hebeisen, S. et al. Anion permeation in human ClC-4 channels. Biophys. J. 84, 2306–2318 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Tsai, T. D., Shuck, M. E., Thompson, D. P., Bienkowski, M. J. & Lee, K. S. Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes. Am. J. Physiol. 268, C1173–C1178 (1995)

    Article  CAS  Google Scholar 

  13. Friedrich, T., Breiderhoff, T. & Jentsch, T. J. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274, 896–902 (1999)

    Article  CAS  Google Scholar 

  14. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Estévez, R., Schroeder, B. C., Accardi, A., Jentsch, T. J. & Pusch, M. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 38, 47–59 (2003)

    Article  Google Scholar 

  16. Traverso, S., Elia, L. & Pusch, M. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic inhibitor. J. Gen. Physiol. 122, 295–306 (2003)

    Article  CAS  Google Scholar 

  17. Bauer, C. K., Steinmeyer, K., Schwarz, J. R. & Jentsch, T. J. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc. Natl Acad. Sci. USA 88, 11052–11056 (1991)

    Article  ADS  CAS  Google Scholar 

  18. Weinreich, F. & Jentsch, T. J. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J. Biol. Chem. 276, 2347–2353 (2001)

    Article  CAS  Google Scholar 

  19. Chen, T.-Y. Structure and function of CLC channels. Annu. Rev. Physiol. 67, 809–839 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Van Dyke, R. W. & Belcher, J. D. Acidification of three types of liver endocytic vesicles: similarities and differences. Am. J. Physiol. Cell Physiol. 266, C81–C94 (1994)

    Article  CAS  Google Scholar 

  21. Hara-Chikuma, M., Wang, Y., Guggino, S. E., Guggino, W. B. & Verkman, A. S. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem. Biophys. Res. Commun. 329, 941–946 (2005)

    Article  CAS  Google Scholar 

  22. Hara-Chikuma, M. et al. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J. Biol. Chem. 280, 1241–1247 (2005)

    Article  CAS  Google Scholar 

  23. Chandy, G., Grabe, M., Moore, H.-P. H. & Machen, T. E. Proton leak and CFTR in regulation of Golgi pH in respiratory epithelial cells. Am. J. Physiol. Cell Physiol. 281, C908–C921 (2001)

    Article  CAS  Google Scholar 

  24. Holroyd, C., Kistner, U., Annaert, W. & Jahn, R. Fusion of endosomes involved in synaptic vesicle recycling. Mol. Biol. Cell 10, 3035–3044 (1999)

    Article  CAS  Google Scholar 

  25. Bayer, M. J., Reese, C., Buhler, S., Peters, C. & Mayer, A. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J. Cell Biol. 162, 211–222 (2003)

    Article  CAS  Google Scholar 

  26. Lorenz, C., Pusch, M. & Jentsch, T. J. Heteromultimeric CLC chloride channels with novel properties. Proc. Natl Acad. Sci. USA 93, 13362–13366 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Lin, Y. W., Lin, C. W. & Chen, T. Y. Elimination of the slow gating of ClC-0 chloride channel by a point mutation. J. Gen. Physiol. 114, 1–12 (1999)

    Article  CAS  Google Scholar 

  28. Gründer, S., Thiemann, A., Pusch, M. & Jentsch, T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762 (1992)

    Article  ADS  Google Scholar 

  29. Estévez, R. et al. Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414, 558–561 (2001)

    Article  ADS  Google Scholar 

  30. Jurman, M. E., Boland, L. M., Liu, Y. & Yellen, G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques 17, 876–881 (1994)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Elia for technical assistance, T. Jentsch and A. Zdebik for providing the ClC-0, ClC-1, ClC-2(Δ16–61), ClC-3, ClC-4, ClC-Ka, barttin and ClC-5 cDNAs, E. Gaggero and G. Gaggero for constructing the high-impedance amplifier, and G. Gaggero for help in constructing the measuring chamber. Financial support by Telethon Italy and the Italian Research Ministry is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pusch.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picollo, A., Pusch, M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436, 420–423 (2005). https://doi.org/10.1038/nature03720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03720

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing