Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural signature of jamming in granular media


Glasses are rigid, but flow when the temperature is increased. Similarly, granular materials are rigid, but become unjammed and flow if sufficient shear stress is applied. The rigid and flowing phases are strikingly different, yet measurements reveal that the structures of glass and liquid are virtually indistinguishable1,2. It is therefore natural to ask whether there is a structural signature of the jammed granular state that distinguishes it from its flowing counterpart. Here we find evidence for such a signature, by measuring the contact-force distribution between particles during shearing. Because the forces are sensitive to minute variations in particle position, the distribution of forces can serve as a microscope with which to observe correlations in the positions of nearest neighbours. We find a qualitative change in the force distribution at the onset of jamming. If, as has been proposed3,4,5,6,7,8,9, the jamming and glass transitions are related, our observation of a structural signature associated with jamming hints at the existence of a similar structural difference at the glass transition—presumably too subtle for conventional scattering techniques to uncover. Our measurements also provide a determination of a granular temperature that is the counterpart in granular systems to the glass-transition temperature in liquids.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Change of force probability distributions with local shear strain rate.
Figure 3: Comparison between force probability distribution and equilibrium hertzian model.


  1. Frick, B. & Richter, D. The microscopic basis of the glass-transition in polymers from neutron-scattering studies. Science 267, 1939–1945 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Leheny, R. L. et al. Structural studies of an organic liquid through the glass transition. J. Chem. Phys. 105, 7783–7794 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Liu, A. J. & Nagel, S. R. Nonlinear dynamics—Jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Liu, A. J., Nagel, S. R. (eds) Jamming and Rheology. Constrained Dynamics on Microscopic and Macroscopic Scales (Taylor and Francis, London, 2001)

  5. Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C. & Levine, D. Analogies between granular jamming and the liquid-glass transition. Phys. Rev. E 65, 051307 (2002)

    Article  ADS  Google Scholar 

  6. Coniglio, A., Fierro, A., Herrmann, H. J. & Nicodemi, M. (eds) Unifying Concepts in Granular Media and Glasses (Elsevier, Amsterdam, 2004)

  7. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Lacevic, N. & Glotzer, S. C. Dynamical heterogeneity and jamming in glass-forming liquids. Preprint at (2004).

  9. Howell, D., Behringer, R. P. & Veje, C. Stress fluctuations in a 2D granular Couette experiment: A continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Liu, C. H. et al. Force fluctuations in bead packs. Science 269, 513–515 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Howell, D. & Behringer, R. P. in Powders and Grains 97 (eds Behringer, R. P. & Jenkins, J. T.) 337–340 (Balkema, Rotterdam, 1997)

    Google Scholar 

  12. Baxter, G. W. in Powders and Grains 97 (eds Behringer, R. P. & Jenkins, J. T.) 345–348 (Balkema, Rotterdam, 1997)

    Google Scholar 

  13. Blair, D. L., Mueggenburg, N. W., Marshall, A. H., Jaeger, H. M. & Nagel, S. R. Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction. Phys. Rev. E 63, 041304 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Løvoll, G., Måløy, K. J. & Flekkøy, E. G. Force measurements on static granular materials. Phys. Rev. E 60, 5872–5878 (1999)

    Article  ADS  Google Scholar 

  15. Makse, H. A., Johnson, D. L. & Schwartz, L. M. Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Mueth, D. M., Jaeger, H. M. & Nagel, S. R. Force distribution in a granular medium. Phys. Rev. E 57, 3164–3169 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Silbert, L. E., Grest, G. S. & Landry, J. W. Statistics of the contact network in frictional and frictionless granular packings. Phys. Rev. E 66, 061303 (2002)

    Article  ADS  Google Scholar 

  18. O'Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  19. O'Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111–114 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Edwards, S. F. & Grinev, D. V. Statistical mechanics of granular materials: stress propagation and distribution of contact forces. Granular Matter 4, 147–153 (2003)

    Article  Google Scholar 

  21. Snoeijer, J. H., Vlugt, T. J. H., van Hecke, M. & van Saarloos, W. Force network ensemble: A new approach to static granular matter. Phys. Rev. Lett. 92, 054302 (2004)

    Article  ADS  Google Scholar 

  22. Conway, S. L., Shinbrot, T. & Glasser, B. J. A Taylor vortex analogy in granular flows. Nature 431, 433–437 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Landry, J. W., Grest, G. S. & Plimpton, S. J. Forces in granular hopper flow. Bull. Am. Phys. Soc. 48, 153 (2003)

    Google Scholar 

  24. Longhi, E., Easwar, N. & Menon, N. Large force fluctuations in a flowing granular medium. Phys. Rev. Lett. 89, 045501 (2002)

    Article  ADS  Google Scholar 

  25. Ferguson, A., Fisher, B. & Chakraborty, B. Impulse distributions in dense granular flows: Signatures of large-scale spatial structures. Europhys. Lett. 66, 277–283 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Radjai, F., Roux, S. & Moreau, J. J. Contact forces in a granular packing. Chaos 9, 544–550 (1999)

    Article  ADS  Google Scholar 

  27. Brujic, J., Edwards, S. F., Hopkinson, I. & Makse, H. A. Measuring the distribution of interdroplet forces in a compressed emulsion system. Physica A 327, 201–212 (2003)

    Article  ADS  Google Scholar 

  28. Ono, I. K. et al. Effective temperatures of a driven system near jamming. Phys. Rev. Lett. 89, 095703 (2002)

    Article  ADS  Google Scholar 

  29. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity Ch. 1, 3rd edn, Sect. 9 (Butterworth-Heinemann, Oxford, 1986)

    MATH  Google Scholar 

Download references


We thank A. Bushmaker, X. Cheng, M. Möbius and N. Mueggenburg for help with the experiment, and S. Coppersmith, B. Chakraborty, A. Ferguson, A. J. Liu, N. Menon, C. S. O'Hern and L. Silbert for discussions about effective temperatures and force distributions. This work was supported by NSF-MRSEC, NSF-CTS and DOE.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eric I. Corwin.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corwin, E., Jaeger, H. & Nagel, S. Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing