Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray structure of a tetranucleosome and its implications for the chromatin fibre

Abstract

DNA in eukaryotic chromosomes is organized in arrays of nucleosomes compacted into chromatin fibres. This higher-order structure of nucleosomes is the substrate for DNA replication, recombination, transcription and repair. Although the structure of the nucleosome core is known at near-atomic resolution1, even the most fundamental information about the organization of nucleosomes in the fibre is controversial. Here we report the crystal structure of an oligonucleosome (a compact tetranucleosome) at 9 Å resolution, solved by molecular replacement using the nucleosome core structure. The structure shows that linker DNA zigzags back and forth between two stacks of nucleosome cores, which form a truncated two-start helix, and does not follow a path compatible with a one-start solenoidal helix2. The length of linker DNA is most probably buffered by stretching of the DNA contained in the nucleosome cores. We have built continuous fibre models by successively stacking tetranucleosomes one on another. The resulting models are nearly fully compacted and most closely resemble the previously described crossed-linker model3. They suggest that the interfaces between nucleosomes along a single helix start are polymorphic.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tetranucleosome structure.
Figure 2: Electron density for the linker DNA (stereographs).
Figure 3: Chromatin fibre models.

Similar content being viewed by others

References

  1. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002)

    Article  CAS  Google Scholar 

  2. Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin. Proc. Natl Acad. Sci. USA 73, 1897–1901 (1976)

    Article  ADS  CAS  Google Scholar 

  3. Williams, S. P. et al. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys. J. 49, 233–248 (1986)

    Article  ADS  CAS  Google Scholar 

  4. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Oudet, P., Gross-Bellard, M. & Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281–300 (1975)

    Article  CAS  Google Scholar 

  6. Thoma, F. & Koller, T. Influence of histone H1 on chromatin structure. Cell 12, 101–107 (1977)

    Article  CAS  Google Scholar 

  7. Ris, H. & Korenberg, J. in Cell Biology (eds Prescott, D. M. & Goldstein, L.) 268–361 (Academic, New York, 1979)

    Google Scholar 

  8. Woodcock, C. L., Frado, L. L. & Rattner, J. B. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J. Cell Biol. 99, 42–52 (1984)

    Article  CAS  Google Scholar 

  9. Widom, J., Finch, J. T. & Thomas, J. O. Higher-order structure of long repeat chromatin. EMBO J. 4, 3189–3194 (1985)

    Article  CAS  Google Scholar 

  10. Woodcock, C. L. Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length. J. Cell Biol. 125, 11–19 (1994)

    Article  CAS  Google Scholar 

  11. Butler, P. J. & Thomas, J. O. Changes in chromatin folding in solution. J. Mol. Biol. 140, 505–529 (1980)

    Article  CAS  Google Scholar 

  12. McGhee, J. D., Nickol, J. M., Felsenfeld, G. & Rau, D. C. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 33, 831–841 (1983)

    Article  CAS  Google Scholar 

  13. Athey, B. D., Smith, M. F., Rankert, D. A., Williams, S. P. & Langmore, J. P. The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin. J. Cell Biol. 111, 795–806 (1990)

    Article  CAS  Google Scholar 

  14. Horowitz, R. A., Agard, D. A., Sedat, J. W. & Woodcock, C. L. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J. Cell Biol. 125, 1–10 (1994)

    Article  CAS  Google Scholar 

  15. Pehrson, J. R. Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin. Proc. Natl Acad. Sci. USA 86, 9149–9153 (1989)

    Article  ADS  CAS  Google Scholar 

  16. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T. J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003)

    Article  CAS  Google Scholar 

  17. Dorigo, B. et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306, 1571–1573 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Thomas, J. O. & Furber, V. Yeast chromatin structure. FEBS Lett. 66, 274–280 (1976)

    Article  CAS  Google Scholar 

  19. Allan, J., Rau, D. C., Harborne, N. & Gould, H. Higher order structure in a short repeat length chromatin. J. Cell Biol. 98, 1320–1327 (1984)

    Article  CAS  Google Scholar 

  20. Luger, K., Rechsteiner, T. J., Flaus, A. J., Waye, M. M. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311 (1997)

    Article  CAS  Google Scholar 

  21. Gerchman, S. E. & Ramakrishnan, V. Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc. Natl Acad. Sci. USA 84, 7802–7806 (1987)

    Article  ADS  CAS  Google Scholar 

  22. Sen, D., Mitra, S. & Crothers, D. M. Higher order structure of chromatin: evidence from photochemically detected linear dichroism. Biochemistry 25, 3441–3447 (1986)

    Article  CAS  Google Scholar 

  23. Widom, J. & Klug, A. Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samples. Cell 43, 207–213 (1985)

    Article  CAS  Google Scholar 

  24. Graziano, V., Gerchman, S. E., Schneider, D. K. & Ramakrishnan, V. Histone H1 is located in the interior of the chromatin 30-nm filament. Nature 368, 351–354 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Blank, T. A. & Becker, P. B. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313 (1995)

    Article  CAS  Google Scholar 

  26. Korber, P. & Horz, W. In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J. Biol. Chem. 279, 35113–35120 (2004)

    Article  CAS  Google Scholar 

  27. Read, R. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D 57, 1373–1382 (2001)

    Article  CAS  Google Scholar 

  28. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  29. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  30. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Schulze-Briese, T. Tomizaki and A. Wagner for assistance in data collection, and J. Widom for providing us with the 601 sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Richmond.

Ethics declarations

Competing interests

Coordinates have been deposited in the Protein Data Bank with identifier 1zbb. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Explanation of the packing disorder found in the tetranucleosome crystals. (PDF 96 kb)

Supplementary Figure S2

Small angle X-ray scattering (SAXS) distributions for chicken erythrocyte chromatin and three chromatin fibre models. (PDF 54 kb)

Supplementary Methods

Description of the sequence and preparation of the DNA contained in the tetranucleosome. (PDF 11 kb)

Supplementary Table S1

Statistics of the X-ray crystallographic structure determination. (PDF 50 kb)

Supplementary Video S1

Tetranucleosome with axis system displayed (video version of Fig. 1c). (WMV 7692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schalch, T., Duda, S., Sargent, D. et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005). https://doi.org/10.1038/nature03686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03686

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing