Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

c-Myc-regulated microRNAs modulate E2F1 expression


MicroRNAs (miRNAs) are 21–23 nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs1. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis2. Although strict tissue- and developmental-stage-specific expression is critical for appropriate miRNA function, mammalian transcription factors that regulate miRNAs have not yet been identified. The proto-oncogene c-MYC encodes a transcription factor that regulates cell proliferation, growth and apoptosis3. Dysregulated expression or function of c-Myc is one of the most common abnormalities in human malignancy4. Here we show that c-Myc activates expression of a cluster of six miRNAs on human chromosome 13. Chromatin immunoprecipation experiments show that c-Myc binds directly to this locus. The transcription factor E2F1 is an additional target of c-Myc that promotes cell cycle progression5,6,7. We find that expression of E2F1 is negatively regulated by two miRNAs in this cluster, miR-17-5p and miR-20a. These findings expand the known classes of transcripts within the c-Myc target gene network, and reveal a mechanism through which c-Myc simultaneously activates E2F1 transcription and limits its translation, allowing a tightly controlled proliferative signal.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MicroRNA expression profiling of P493-6 cells with high and low c-Myc expression.
Figure 2: c-Myc induces expression of the miR-17 cluster.
Figure 3: c-Myc binds directly to the mir-17 cluster genomic locus.
Figure 4: miR-17-5p and miR-20a regulate E2F1 translational yield.


  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    CAS  Article  PubMed  Google Scholar 

  2. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Levens, D. Disentangling the MYC web. Proc. Natl Acad. Sci. USA 99, 5757–5759 (2002)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Cole, M. D. & McMahon, S. B. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18, 2916–2924 (1999)

    CAS  Article  PubMed  Google Scholar 

  5. Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends Biochem. Sci. 29, 409–417 (2004)

    CAS  Article  PubMed  Google Scholar 

  6. Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–426 (1997)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. McManus, M. T. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258 (2003)

    CAS  Article  PubMed  Google Scholar 

  11. Pajic, A. et al. Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. Int. J. Cancer 87, 787–793 (2000)

    CAS  Article  PubMed  Google Scholar 

  12. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  16. Cullen, B. R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004)

    CAS  Article  PubMed  Google Scholar 

  17. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004)

    CAS  Article  PubMed  Google Scholar 

  18. Guo, Q. M. et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000)

    CAS  PubMed  Google Scholar 

  19. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997)

    CAS  PubMed  Google Scholar 

  20. Zeller, K. I., Jegga, A. G., Aronow, B. J., O'Donnell, K. A. & Dang, C. V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matsumura, I., Tanaka, H. & Kanakura, Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2, 333–338 (2003)

    CAS  Article  PubMed  Google Scholar 

  22. Zeller, K. I. et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 276, 48285–48291 (2001)

    CAS  Article  PubMed  Google Scholar 

  23. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    CAS  Article  PubMed  Google Scholar 

  24. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Hutvagner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, E98 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin, Y. W. et al. Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur. J. Cancer 35, 1730–1734 (1999)

    CAS  Article  PubMed  Google Scholar 

  27. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K. & Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)

    CAS  Article  PubMed  Google Scholar 

Download references


The authors thank D. Eick and J. Sedivy for cell lines, J. Kim for assistance with ChIP, and F. Spencer and M. Awad for critical reading of the manuscript. This work was supported in part by a grant from the NIH (C.V.D.) and a Sidney Kimmel Pilot Project Grant (J.T.M.). C.V.D. is the Johns Hopkins Family Professor in Oncology Research, and J.T.M. is a March of Dimes Basil O'Connor Scholar.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joshua T. Mendell.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Conservation of the miRNA binding sites in the 3' UTR of E2F1 mRNA and reporter assays demonstrating direct regulation of this transcript by miR-17-5p and miR-20a. (PDF 86 kb)

Supplementary Figure S2

Northern and western blot analysis of E2F1 and c-Myc mRNA and protein levels during a serum-stimulation time-course of primary human fibroblasts. (PDF 486 kb)

Supplementary Figure Legends

Legends to accompany the above Supplementary Figures. (DOC 21 kb)

Supplementary Table S1

Sequences of probes spotted on miRNA array. (XLS 147 kb)

Supplementary Table S2

Sequences of primers used in ChIP analysis of the miR-17 cluster. (XLS 19 kb)

Supplementary Methods

Additional information on methods used in this study, including the construction of E2F1 and PTEN luciferase reporter plasmids and the luciferase assays. (DOC 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Donnell, K., Wentzel, E., Zeller, K. et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing