Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong present-day aerosol cooling implies a hot future

Abstract

Atmospheric aerosols counteract the warming effects of anthropogenic greenhouse gases by an uncertain, but potentially large, amount. This in turn leads to large uncertainties in the sensitivity of climate to human perturbations, and therefore also in carbon cycle feedbacks and projections of climate change. In the future, aerosol cooling is expected to decline relative to greenhouse gas forcing, because of the aerosols' much shorter lifetime and the pursuit of a cleaner atmosphere. Strong aerosol cooling in the past and present would then imply that future global warming may proceed at or even above the upper extreme of the range projected by the Intergovernmental Panel on Climate Change.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Climate sensitivity required to explain the observed 1940–2000 warming as a function of the strength of aerosol radiative cooling.
Figure 2: Temperature change simulated by the simple model for the period 1850 to 2100.
Figure 3: Modelled temperature change and CO 2 increase by 2100 under different development scenarios.
Figure 4: Strength of climate-carbon cycle feedback as a function of climate sensitivity.

References

  1. Houghton, J. T. et al. in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK/New York, NY, 2001)

  2. Murphy, J. M. et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768–772 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Stainforth, D. A. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A. & Rayner, N. A. An observationally based estimate of the climate sensitivity. J. Clim. 15, 3117–3121 (2002)

    Article  ADS  Google Scholar 

  5. Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R. & Webster, M. D. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295, 113–117 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Knutti, R., Stocker, T. F., Joos, F. & Plattner, G. K. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416, 719–723 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. Climate Change: The IPCC Assessment (Cambridge Univ. Press, Cambridge, UK, 1990)

    Google Scholar 

  8. Charlson, R. J. et al. Climate forcing by anthropogenic aerosols. Science 255, 423–430 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Friedlingstein, P. et al. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543–1546 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Hansen, J. et al. Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res. 107, 4347, doi:10.1029/2001JD001143 (2002)

    Article  Google Scholar 

  13. Folland, C. K. et al. Global temperature change and its uncertainties since 1861. Geophys. Res. Lett. 28, 2621–2624 (2001)

    Article  ADS  Google Scholar 

  14. Anderson, T. L. et al. Climate forcing by aerosols—a hazy picture. Science 300, 1103–1104 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R. & Delworth, T. L. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407, 617–620 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Koch, D. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res. 106, 20311–20332 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Haywood, J. & Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 38, 513–543 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Powlson, D. Will soil amplify climate change? Nature 433, 204–205 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Alley, R. B. Palaeoclimatic insights into future climate challenges. Phil. Trans. R. Soc. Lond. Ser. A 361, 1831–1848 (2003)

    Article  ADS  Google Scholar 

  21. Jenkyns, H. C., Forster, A., Schouten, S. & Damste, J. S. S. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Jones, C. D. & Cox, P. M. Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2 . Atmos. Sci. Lett. 2, doi:10.1006/asle.2001.0041 (2001)

  23. Friedlingstein, P., Dufresne, J. L., Cox, P. M. & Rayner, P. How positive is the feedback between climate change and the carbon cycle? Tellus B 55, 692–700 (2003)

    Article  ADS  Google Scholar 

  24. Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Nakicenovic, N. & Swart, R. (eds) Special Report on Emissions Scenarios (Cambridge Univ. Press, Cambridge, UK, 2000)

  26. O'Neill, B. C. & Oppenheimer, M. Dangerous climate impacts and the Kyoto protocol. Science 296, 1971–1972 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Hansen, J. E. A slippery slope: How much global warming constitutes “Dangerous anthropogenic interference”? Clim. Change 68, 269–279 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Pope, C. A. et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287, 1132–1141 (2002)

    Article  CAS  Google Scholar 

  29. Jones, C. D., Cox, P. & Huntingford, C. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B 55, 642–648 (2003)

    ADS  Google Scholar 

  30. Stott, P. A. et al. Attribution of twentieth century temperature change to natural and anthropogenic causes. Clim. Dyn. 17, 1–21 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.D.J. was supported by the UK DEFRA Climate Prediction Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinrat O. Andreae.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andreae, M., Jones, C. & Cox, P. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005). https://doi.org/10.1038/nature03671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03671

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing