Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition

Abstract

Revealing the mechanisms for neuronal somatic diversification remains a central challenge for understanding individual differences in brain organization and function. Here we show that an engineered human LINE-1 (for long interspersed nuclear element-1; also known as L1) element can retrotranspose in neuronal precursors derived from rat hippocampus neural stem cells. The resulting retrotransposition events can alter the expression of neuronal genes, which, in turn, can influence neuronal cell fate in vitro. We further show that retrotransposition of a human L1 in transgenic mice results in neuronal somatic mosaicism. The molecular mechanism of action is probably mediated through Sox2, because a decrease in Sox2 expression during the early stages of neuronal differentiation is correlated with increases in both L1 transcription and retrotransposition. Our data therefore indicate that neuronal genomes might not be static, but some might be mosaic because of de novo L1 retrotransposition events.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: L1 expression correlates with decreased Sox2 expression in HCN cells.
Figure 2: NPCs can support L1 retrotransposition.
Figure 3: L1 retrotransposition events can modify neuronal gene expression.
Figure 4: An L1 retrotransposition event can drive neuronal maturation through Psd-93 overexpression.
Figure 5: L1 retrotransposition detection in the brains of transgenic mice.

References

  1. Lie, D. C., Song, H., Colamarino, S. A., Ming, G. L. & Gage, F. H. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu. Rev. Pharmacol. Toxicol. 44, 399–421 (2004)

    CAS  Article  Google Scholar 

  2. Taupin, P. & Gage, F. H. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res. 69, 745–749 (2002)

    CAS  Article  Google Scholar 

  3. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000)

    ADS  CAS  Article  Google Scholar 

  4. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997)

    ADS  CAS  Article  Google Scholar 

  5. van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Gibbs, R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004)

    ADS  CAS  Article  Google Scholar 

  8. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)

    ADS  CAS  Article  Google Scholar 

  9. Grimaldi, G., Skowronski, J. & Singer, M. F. Defining the beginning and end of KpnI family segments. EMBO J. 3, 1753–1759 (1984)

    CAS  Article  Google Scholar 

  10. Moran, J. V. & Gilbert, N. in Mobile DNA II (eds Craig, N., Craggie, R., Gellert, M. & Lambowitz, A.) 836–869 (ASM Press, Washington DC, 2002)

    Book  Google Scholar 

  11. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003)

    ADS  CAS  Article  Google Scholar 

  12. Goodier, J. L., Ostertag, E. M., Du, K. & Kazazian, H. H. Jr A novel active L1 retrotransposon subfamily in the mouse. Genome Res. 11, 1677–1685 (2001)

    CAS  Article  Google Scholar 

  13. DeBerardinis, R. J., Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Jr Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nature Genet. 20, 288–290 (1998)

    CAS  Article  Google Scholar 

  14. Swergold, G. D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990)

    CAS  Article  Google Scholar 

  15. Athanikar, J. N., Badge, R. M. & Moran, J. V. A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32, 3846–3855 (2004)

    CAS  Article  Google Scholar 

  16. Tchenio, T., Casella, J. F. & Heidmann, T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28, 411–415 (2000)

    CAS  Article  Google Scholar 

  17. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H. H. Jr. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929–4940 (2003)

    CAS  Article  Google Scholar 

  18. Wegner, M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409–1420 (1999)

    ADS  CAS  Article  Google Scholar 

  19. Zappone, M. V. et al. Sox2 regulatory sequences direct expression of a β-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382 (2000)

    CAS  Google Scholar 

  20. Lietz, M., Hohl, M. & Thiel, G. RE-1 silencing transcription factor (REST) regulates human synaptophysin gene transcription through an intronic sequence-specific DNA-binding site. Eur. J. Biochem. 270, 2–9 (2003)

    CAS  Article  Google Scholar 

  21. Hsieh, J. & Gage, F. H. Epigenetic control of neural stem cell fate. Curr. Opin. Genet. Dev. 14, 461–469 (2004)

    CAS  Article  Google Scholar 

  22. Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996)

    CAS  Article  Google Scholar 

  23. Ostertag, E. M., Prak, E. T., DeBerardinis, R. J., Moran, J. V. & Kazazian, H. H. Jr Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 28, 1418–1423 (2000)

    CAS  Article  Google Scholar 

  24. Brouha, B. et al. Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am. J. Hum. Genet. 71, 327–336 (2002)

    CAS  Article  Google Scholar 

  25. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F. H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl Acad. Sci. USA 101, 16659–16664 (2004)

    ADS  CAS  Article  Google Scholar 

  26. Morrish, T. A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nature Genet. 31, 159–165 (2002)

    CAS  Article  Google Scholar 

  27. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999)

    ADS  CAS  Article  Google Scholar 

  28. Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002)

    CAS  Article  Google Scholar 

  29. Symer, D. E. et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110, 327–338 (2002)

    CAS  Article  Google Scholar 

  30. Schwahn, U. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genet. 19, 327–332 (1998)

    CAS  Article  Google Scholar 

  31. Trelogan, S. A. & Martin, S. L. Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc. Natl Acad. Sci. USA 92, 1520–1524 (1995)

    ADS  CAS  Article  Google Scholar 

  32. D'Amour, K. A. & Gage, F. H. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc. Natl Acad. Sci. USA 100(Suppl 1), 11866–11872 (2003)

    ADS  CAS  Article  Google Scholar 

  33. Ostertag, E. M. et al. A mouse model of human L1 retrotransposition. Nature Genet. 32, 655–660 (2002)

    CAS  Article  Google Scholar 

  34. Prak, E. T., Dodson, A. W., Farkash, E. A. & Kazazian, H. H. Jr. Tracking an embryonic L1 retrotransposition event. Proc. Natl Acad. Sci. USA 100, 1832–1837 (2003)

    ADS  CAS  Article  Google Scholar 

  35. Han, J. S., Szak, S. T. & Boeke, J. D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004)

    ADS  CAS  Article  Google Scholar 

  36. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992)

    CAS  Google Scholar 

  37. Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nature Genet. 35, 363–366 (2003)

    CAS  Article  Google Scholar 

  38. Ostertag, E. M. & Kazazian, H. H. Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001)

    CAS  Article  Google Scholar 

  39. Gage, F. H., Ray, J. & Fisher, L. J. Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci. 18, 159–192 (1995)

    CAS  Article  Google Scholar 

  40. Gage, F. H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl Acad. Sci. USA 92, 11879–11883 (1995)

    ADS  CAS  Article  Google Scholar 

  41. Zapala, M. A., Lockhart, D. J., Pankratz, D. G., Garcia, A. J. & Barlow, C. Software and methods for oligonucleotide and cDNA array data analysis. Genome Biol. 3, SOFTWARE0001.1–0001.9 (2002)

  42. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    ADS  CAS  Article  Google Scholar 

  43. Naef, F., Hacker, C. R., Patil, N. & Magnasco, M. Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays. Genome Biol. 3, RESEARCH0018.1–0018.11 (2002)

  44. Hogan, J., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank M. L. Gage for editorial comments, H. Suh for Sox2-EGFP brain sections and embryo advice, P. Taupin for assistance during CCg experiments, and J. L. Garcia-Perez and R. Badge for critical comments on the manuscript. A.R.M. is a Pew Latin-America Fellow. V.T.C. was supported by grants from Lynn and Edward Streim and the Neuroplasticity of Aging Training Grant. J.V.M. was supported by grants from the National Institutes of Health and the W. M. Keck Foundation, and F.H.G. was supported by the Lookout Fund, The Christopher Reeve Paralysis Foundation, Max Planck Research Award Program, by the German Federal Ministry for Education, Science, Research and Technology and the National Institutes of Health: National Institute on Aging and National Institute of Neurological Disease and Stroke.Author Contributions A.R.M. is the leading author. He contributed to the concept, designed, performed the experiments and analysed the data, and wrote the manuscript. V.T.C. designed and performed the microarrays experiments. M.C.N.M. designed, performed and analysed the inverse PCR data and some tissue culture experiments and revised the manuscript. W.D. performed the transgenic experiment. J.V.M. contributed reagents, and performed data analyses and manuscript revision. F.H.G. is the senior author. He contributed to the concept, analysed the data, revised the manuscript and provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Gage.

Ethics declarations

Competing interests

Microarray data have been deposited in the GEO archive under accession number GSE2499, and the Cl22 L1 insertion sequence has been deposited in GenBank under accession number AY995186. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Data

Structures of L1 derived retrotransposition events in single cell clones from rat neural progenitor cells transfected with the L1-EGFP reporter construct (Word; 188 KB). (DOC 184 kb)

Supplementary Figure Legends

Legends to accompany the below Supplementary Figures (DOC 26 kb)

Supplementary Methods

Detailed, additional methods information to accompany the main manuscript. (DOC 96 kb)

Supplementary Notes

Description of some neuronal genes targeted by L1 retrotransposition in neuronal precursor cells. (DOC 40 kb)

Supplementary Tables S1 and S2

These tables resume the cloning survival after CCg-treatment and the transcripts obtained from the CCg-array experiment, respectively. (DOC 26 kb)

Supplementary Video

This movie shows the neuronal differentiation of the Cl 22. The time lapse covers a period of 41h, during witch time the EGFP from the insertion site (Psd-93 gene) expression is turned on. (MOV 2418 kb)

Supplementary Figure S1

L1 transcripts are enriched in CCg-responsive cells. (JPG 116 kb)

Supplementary Figure S2

Luciferase controls for the L1 5'UTR promoter analyses. (JPG 62 kb)

Supplementary Figure S3

Adult NPCs derived from rat brain support L1 retrotransposition. FACS analysis. (JPG 95 kb)

Supplementary Figure S4

Chromatin modification is associated with L1 insertion silencing. (JPG 371 kb)

Supplementary Figure S5

Embryonic analysis of the L1-EGFP transgenic mice. Pregnant females were sacrificed at E10.5 and embryos were removed by micro-dissection. (JPG 312 kb)

Supplementary Figure S6

Detection of L1 retrotransposition in other tissues of the L1-EGFP transgenic mice. (JPG 254 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muotri, A., Chu, V., Marchetto, M. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005). https://doi.org/10.1038/nature03663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03663

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing