Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars

Abstract

Some heavy elements (with atomic number A > 69) are produced by the ‘rapid’ (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons1,2,3,4,5,6,7,8. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from 0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites9 can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way10,11,12, to determine the U/Th production ratio very precisely . This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations5,6, to help determine the source of Galactic cosmic rays, and to date circumstellar grains5. I also estimate the age of the Milky Way ( in a way that is independent of the uncertainties associated with fluctuations in the microwave background13 or models of stellar evolution14,15.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Distribution of G-dwarf metallicity normalized to solar composition.
Figure 2: Determinations of the U/Th production ratio and the age of the Milky Way.
Figure 3: Estimations of the 238 U/ 232 Th production ratio in r-process nucleosynthesis.

References

  1. Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

    ADS  Article  Google Scholar 

  2. Cowan, J. J., Thielemann, F.-K. & Truran, J. W. Radioactive dating of the elements. Annu. Rev. Astron. Astrophys. 29, 447–497 (1991)

    ADS  CAS  Article  Google Scholar 

  3. Pfeiffer, B., Kratz, K.-L. & Thielemann, F.-K. Analysis of the solar-system r-process abundance pattern with the new ETFSI-Q mass formula. Z. Phys. A 357, 235–238 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Meyer, B. S. & Truran, J. W. Nucleocosmochronology. Phys. Rep. 333–334, 1–11 (2000)

    ADS  Article  Google Scholar 

  5. Goriely, S. & Arnould, M. Actinides: How well do we know their stellar production? Astron. Astrophys. 379, 1113–1122 (2001)

    ADS  CAS  Article  Google Scholar 

  6. Schatz, H. et al. Thorium and uranium chronometers applied to CS 31082–001. Astrophys. J. 579, 626–638 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Wanajo, S., Itoh, N., Ishimaru, Y., Nozawa, S. & Beers, T. C. The r-process in the neutrino winds of core-collapse supernovae and U-Th cosmochronology. Astrophys. J. 577, 853–865 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Otsuki, K., Mathews, G. J. & Kajino, T. r-Process abundance universality and actinide cosmochronology. N. Astron. 8, 767–776 (2003)

    ADS  CAS  Article  Google Scholar 

  9. Chen, J. H., Wasserburg, G. J. & Papanastassiou, D. A. Th and U abundances in chondritic meteorites. Lunar Planet. Sci. XXIV, 277–278 (1993)

    ADS  Google Scholar 

  10. Cayrel, R. et al. Measurement of stellar age from uranium decay. Nature 409, 691–692 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  11. Hill, V. et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082–001. Astron. Astrophys. 387, 560–579 (2002)

    ADS  CAS  Article  Google Scholar 

  12. Cowan, J. J. et al. The chemical composition and age of the metal-poor halo star BD +17°3248. Astrophys. J. 572, 861–879 (2002)

    ADS  CAS  Article  Google Scholar 

  13. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003)

    ADS  Article  Google Scholar 

  14. Krauss, L. M. & Chaboyer, B. Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299, 65–69 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. Hansen, B. et al. Hubble Space Telescope observations of the white dwarf cooling sequence of M4. Astrophys. J. Suppl. Ser. 155, 551–576 (2004)

    ADS  Article  Google Scholar 

  16. Rutherford, E. Origin of actinium and the age of the Earth. Nature 123, 313–314 (1929)

    ADS  CAS  Article  Google Scholar 

  17. Tinsley, B. M. Evolution of the stars and gas in galaxies. Fund. Cosmic Phys. 5, 287–388 (1980)

    ADS  CAS  Google Scholar 

  18. Yokoi, K., Takahashi, K. & Arnould, M. The 187Re-187Os chronology and chemical evolution of the Galaxy. Astron. Astrophys. 117, 65–82 (1983)

    ADS  CAS  Google Scholar 

  19. Clayton, D. D. Nuclear cosmochronology within analytic models of the chemical evolution of the solar neighbourhood. Mon. Not. R. Astron. Soc. 234, 1–36 (1988)

    ADS  CAS  Article  Google Scholar 

  20. Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, Cambridge, 1997)

    Google Scholar 

  21. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    ADS  CAS  Article  Google Scholar 

  22. Nordström, B. et al. The Geneva-Copenhagen survey of the solar neighbourhood. Astron. Astrophys. 418, 989–1019 (2004)

    ADS  Article  Google Scholar 

  23. Wakker, B. P. et al. Accretion of low-metallicity gas by the Milky Way. Nature 402, 388–390 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. Dauphas, N., Rauscher, T., Marty, B. & Reisberg, L. Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries. Nucl. Phys. A 719, 287c–295c (2003)

    ADS  Article  Google Scholar 

  25. Kennicutt, R. C. Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    ADS  CAS  Article  Google Scholar 

  26. Holmberg, J. & Flynn, C. The local density of matter mapped by Hipparcos. Mon. Not. R. Astron. Soc. 313, 209–216 (2000)

    ADS  Article  Google Scholar 

  27. Holmberg, J. & Flynn, C. The local surface density of disc matter mapped by Hipparcos. Mon. Not. R. Astron. Soc. 352, 440–446 (2004)

    ADS  CAS  Article  Google Scholar 

  28. Chang, R. X., Hou, J. L., Shu, C. G. & Fu, C. Q. Two-component model for the chemical evolution of the galactic disk. Astron. Astrophys. 350, 38–48 (1999)

    ADS  CAS  Google Scholar 

  29. Argast, D., Samland, M., Gerhard, O. E. & Thielemann, F. K. Metal-poor halo stars as tracers of ISM mixing processes during halo formation. Astron. Astrophys. 356, 873–887 (2000)

    ADS  CAS  Google Scholar 

  30. Chiappini, C., Matteucci, F., Beers, T. C. & Nomoto, K. The earliest phases of Galaxy formation. Astrophys. J. 515, 226–238 (2000)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

I thank J. W. Truran, T. Rauscher, A. M. Davis, J. J. Cowan, R. Cayrel, V. Hill, R. Yokochi, B. Marty and L. Reisberg for discussions, and B. Hansen for communication of the 68% confidence interval for the age of the globular cluster Messier 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dauphas.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Equations S1-S12, Supplementary Figure S1 and Supplementary Table S1 (PDF 184 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dauphas, N. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars. Nature 435, 1203–1205 (2005). https://doi.org/10.1038/nature03645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03645

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing