Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lightning-induced intensification of the ionospheric sporadic E layer

Abstract

A connection between thunderstorms and the ionosphere has been hypothesized since the mid-1920s1. Several mechanisms have been proposed to explain this connection2,3,4,5,6,7, and evidence from modelling8 as well as various types of measurements9,10,11,12,13,14 demonstrate that lightning can interact with the lower ionosphere. It has been proposed, on the basis of a few observed events15, that the ionospheric ‘sporadic E’ layer—transient, localized patches of relatively high electron density in the mid-ionosphere E layer, which significantly affect radio-wave propagation—can be modulated by thunderstorms, but a more formal statistical analysis is still needed. Here we identify a statistically significant intensification and descent in altitude of the mid-latitude sporadic E layer directly above thunderstorms. Because no ionospheric response to low-pressure systems without lightning is detected, we conclude that this localized intensification of the sporadic E layer can be attributed to lightning. We suggest that the co-location of lightning and ionospheric enhancement can be explained by either vertically propagating gravity waves that transfer energy from the site of lightning into the ionosphere, or vertical electrical discharge, or by a combination of these two mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superposed epoch analyses for lightning and low-pressure events.
Figure 2: Redistribution of δ f oEs values as a result of lightning.
Figure 3: Change in blanketing frequency and E s layer height in response to lightning.

Similar content being viewed by others

References

  1. Wilson, C. T. R. The electric field of a thundercloud and some of its effects. Proc. Phys. Soc. Lond. 37, 32–37 (1925)

    Article  Google Scholar 

  2. Bauer, S. J. A possible troposphere-ionosphere relationship. J. Geophys. Res. 62, 425–430 (1957)

    Article  ADS  Google Scholar 

  3. Bhar, J. N. & Syam, P. Effect of thunderstorms and magnetic storms on the ionisation of the Kennelley-Heaviside Layer. Phil. Mag. J. Sci. 23, 513–528 (1937)

    Article  Google Scholar 

  4. Mitra, S. K. & Kundu, M. R. Thunderstorms and sporadic E ionisation of the ionosphere. Nature 174, 798–799 (1954)

    Article  ADS  Google Scholar 

  5. Rastogi, R. G. Thunderstorms and sporadic E layer ionisation. Indian J. Meteorol. Geophys. 1, 43–54 (1957)

    Google Scholar 

  6. Ross, W. B. & Henderson, J. T. Radio studies of the ionosphere. Nature 133, 523–524 (1933)

    Article  ADS  Google Scholar 

  7. Velinov, P. I., Spassov, Chr. W. & Kolev, S. I. Ionospheric effects of lightning during the increasing part of solar cycle 22. J. Atmos. Terr. Phys. 54(10), 1347–1353 (1992)

    Article  ADS  Google Scholar 

  8. Taranenko, Y. N., Inan, U. S. & Bell, T. F. Interaction with the lower ionosphere of electromagnetic pulses from lightning: heating, attachment and ionisation. Geophys. Res. Lett. 20, 1539–1542 (1993)

    Article  ADS  Google Scholar 

  9. Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S. & Wood, T. G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416, 152–154 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sentman, D. D. et al. Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J. Atmos. Terr. Phys. 65, 537–550 (2003)

    Article  ADS  Google Scholar 

  11. Inan, U. S., Rodriguez, J. V. & Idone, V. P. VLF signatures of lightning-induced heating and ionisation of the night-time D-region. Geophys. Res. Lett. 20, 2355–2358 (1993)

    Article  ADS  Google Scholar 

  12. Inan, U. S., Slingeland, A. & Pasko, V. P. VLF and LF signatures of mesospheric/lower ionospheric response to lightning discharges. J. Geophys. Res. 101, 5219–5238 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Kelley, M. C. et al. Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. 1. Campaign overview and initial ionospheric results. J. Geophys. Res. 90, 9815–9823 (1985)

    Article  ADS  Google Scholar 

  14. Kelley, M. C., Ding, J. G. & Holzworth, R. H. Intense ionospheric electric and magnetic field pulses generated by lightning. Geophys. Res. Lett. 17, 2221–2224 (1990)

    Article  ADS  Google Scholar 

  15. Watson-Watt, R. A. Discussion on the ionosphere. Proc. R. Soc. 141, 715–718 (1933)

    Google Scholar 

  16. Lee, A. C. L. Ground truth confirmation and theoretical limits of an experimental VLF arrival time difference lightning flash location system. Q. J. R. Meteorol. Soc. 115, 1147–1166 (1989)

    Article  ADS  Google Scholar 

  17. Bibl, K. & Reinisch, B. W. The universal digital ionosonde. Radio Sci. 13, 519–530 (1978)

    Article  ADS  Google Scholar 

  18. Whitehead, J. D. Recent work on mid-latitude and equatorial sporadic-E. J. Atmos. Terr. Phys. 51, 401–424 (1989)

    Article  ADS  Google Scholar 

  19. Plane, J. M. C., Self, D. E., Vondrak, T. & Woodcock, K. R. I. Laboratory studies and modelling of mesospheric iron chemistry. Adv. Space Res. 32, 699–708 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Davis, C. J., Wild, M. N., Lockwood, M. & Tulunay, Y. K. Ionospheric and geomagnetic responses to changes in IMF Bz: a superposed epoch study. Ann. Geophys. 15, 217–230 (1997)

    ADS  CAS  Google Scholar 

  21. Samson, J. C. & Yeung, K. L. Some generalizations on the method of superposed epoch analysis. Planet. Space Sci. 34, 1133–1142 (1986)

    Article  ADS  Google Scholar 

  22. Shatkhin, Kh. J. Ionospheric-tropospheric relationships. Geomag. Aeronomy 4, 623–625 (1964)

    ADS  Google Scholar 

  23. Shrestha, K. L. Sporadic-E and atmospheric pressure waves. J. Atmos. Terr. Phys. 33, 205–211 (1971)

    Article  ADS  Google Scholar 

  24. Liu, J. Y. et al. Vertical phase and group velocities of internal gravity waves derived from ionograms during the solar eclipse of 24 October 1995. J. Atmos. Solar-Terr. Phys. 60, 1679–1686 (1998)

    Article  ADS  Google Scholar 

  25. Larsen, M. F. Wind shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. J. Geophys. Res. 107(A8), 1–14 (2002)

    Article  Google Scholar 

  26. Chimonas, G. Enhancement of sporadic E by horizontal transport within the layer. J. Geophys. Res. 76, 4578–4586 (1971)

    Article  ADS  Google Scholar 

  27. Sato, K. Vertical wind disturbances in the afternoon of mid-summer revealed by the MU-radar. Geophys. Res. Lett. 19, 1943–1946 (1992)

    Article  ADS  Google Scholar 

  28. Woodman, R. F. & Kudeki, E. A causal relationship between lightning and explosive spread F. Geophys. Res. Lett. 11, 1165–1167 (1984)

    Article  ADS  Google Scholar 

  29. Armstrong, W. C. Lightning triggered from the Earth's magnetosphere as the source of synchronised whistlers. Nature 327, 405–408 (1987)

    Article  ADS  Google Scholar 

  30. Schunk, R. W. & Nagy, A. F. Ionospheres: Physics, Plasma Physics, and Chemistry 243 (Cambridge Univ. Press, Cambridge, 2000)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Hockenhull for prompting this investigation, J. Smith for maintaining the Chilton ionosonde, P. Odams of the UK Meteorological Office for supplying the Arrival Time Difference data, A. Ruddell for supplying the pressure data and E. Williams for his support and encouragement. The ionosonde at Chilton is funded by the UK Particle Physics and Astronomy Research Council, as is the UK Solar System Data Centre at the Rutherford Appleton Laboratory, where ionospheric data from Chilton and other stations are made available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Davis.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, C., Johnson, C. Lightning-induced intensification of the ionospheric sporadic E layer. Nature 435, 799–801 (2005). https://doi.org/10.1038/nature03638

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03638

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing