Letter | Published:

Orofacial somatomotor responses in the macaque monkey homologue of Broca's area


In the ventrolateral frontal lobe of the human brain there is a distinct entity, cytoarchitectonic area 44 (Broca's area), which is crucial in speech production1,2,3,4. There has been controversy5,6 over whether monkeys possess an area comparable to human area 44. We have addressed this question in the macaque monkey by combining quantitative architectonic analysis of the cortical areas within the ventrolateral frontal region with electrophysiological recording of neuron activity and electrical intracortical microstimulation. Here we show that, immediately in front of the ventral part of the agranular premotor cortical area 6, there is a distinct cortical area that is architectonically comparable to human area 44 and that this monkey area 44 is involved with the orofacial musculature. We suggest that area 44 might have evolved originally as an area exercising high-level control over orofacial actions, including those related to communicative acts, and that, in the human brain, area 44 eventually also came to control certain aspects of the speech act.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Penfield, W. & Roberts, L. Speech and Brain Mechanisms (Princeton Univ. Press, Princeton, New Jersey, 1959)

  2. 2

    Rasmussen, T. & Milner, B. in Cerebral Localization (eds Zulch, K. J., Creutzfeldt, O. & Galbraith, G. C.) 238–257 (Springer, Berlin, 1975)

  3. 3

    Ojemann, G. A., Ojemann, J. G., Lettich, E. & Berger, M. S. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989)

  4. 4

    Duffau, H. et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage 20, 1903–1914 (2003)

  5. 5

    Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)

  6. 6

    Matelli, M., Luppino, G., Geyer, S. & Zilles, K. in The Human Nervous System (eds Paxinos, G. & Mai, J. K.) 973–996 (Elsevier Academic, San Diego, 2004)

  7. 7

    Amunts, K. et al. Broca's region revisited: Cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999)

  8. 8

    Mohr, J. P. in Studies in Neurolinguistics (eds Witaker, H. & Witaker, N. A.) 201–235 (Academic, New York, 1976)

  9. 9

    Poeppel, D. & Hickok, G. Towards a new functional anatomy of language. Cognition 92, 1–12 (2004)

  10. 10

    Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth, Leipzig, 1909)

  11. 11

    Rizzolatti, G., Fadiga, L. & Gallese, V. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141 (1996)

  12. 12

    Ferrari, P. F., Gallese, V., Rizzolatti, G. & Fogassi, L. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur. J. Neurosci. 17, 1703–1714 (2003)

  13. 13

    Sherwood, C. C., Broadfield, D. C., Holloway, R. L., Gannon, P. J. & Hof, P. R. Variability in Broca's area homologue in African Great Apes: Implications for language evolution. Anat. Rec. A 271, 276–285 (2003)

  14. 14

    Cantalupo, C. & Hopkins, W. D. Asymmetric Broca's area in great apes. Nature 414, 505 (2001)

  15. 15

    Bruce, C. J., Goldberg, M. E., Stanton, G. B. & Bushnell, M. C. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985)

  16. 16

    Huerta, M. F., Krubitzer, L. A. & Kaas, J. H. Frontal eye fields as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J. Comp. Neurol. 271, 473–492 (1987)

  17. 17

    Stanton, G. B., Deng, S.-Y., Goldberg, M. E. & McMullen, N. T. Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J. Comp. Neurol. 282, 415–427 (1989)

  18. 18

    Hurford, J. in Evolution of Communication Systems: A Comparative Approach (eds Kimbrough Oller, D., Griebel, M. & Plunkett, K.) 297–313 (MIT Press, Cambridge, Massachusetts, 2004)

  19. 19

    Matelli, M., Camarda, R., Glickstein, M. & Rizzolatti, G. Afferent and efferent projections of the inferior area 6 in the macaque monkey. J. Comp. Neurol. 251, 281–298 (1986)

  20. 20

    Tokuno, H., Takada, M., Nambu, A. & Inase, M. Reevaluation of ipsilateral corticocortical inputs to the orofacial region of the primary motor cortex in the macaque monkey. J. Comp. Neurol. 389, 34–48 (1997)

  21. 21

    Petrides, M. The mid-ventrolateral prefrontal cortex and active mnemonic retrieval. Neurobiol. Learn. Mem. 78, 528–538 (2002)

  22. 22

    Cadoret, G. & Petrides, M. Neuronal mechanisms underlying active retrieval processing in the monkey (Abstract Viewer/Itinerary Planner. Soc. Neurosci. Prog. No. 324, 3, 2004).

  23. 23

    Cadoret, G., Pike, G. B. & Petrides, M. Selective activation of the ventrolateral prefrontal cortex in the human brain during active retrieval processing. Eur. J. Neurosci. 14, 1164–1170 (2001)

  24. 24

    Petrides, M., Alivisatos, B., Meyer, E. & Evans, A. C. Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc. Natl Acad. Sci. USA 92, 5803–5807 (1993)

  25. 25

    Amunts, K. et al. Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22, 42–56 (2004)

  26. 26

    Hoover, J. E. & Strick, P. L. Multiple output channels in the basal ganglia. Science 259, 819–821 (1993)

  27. 27

    Lynch, J. C., Hoover, J. E. & Strick, P. L. Input to the primate frontal eye field from the sunstantia nigra, superior colliculus and dentate nucleus demonstrated by transneuronal transport. Exp. Brain Res. 100, 181–186 (1994)

  28. 28

    Tian, J. R. & Lynch, J. C. Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkey. J. Neurophysiol. 76, 2740–2753 (1996)

  29. 29

    Tian, J. R. & Lynch, J. C. Slow and saccadic eye movements evoked by microstimulation in the supplementary eye field of the cebus monkey. J. Neurophysiol. 74, 2204–2210 (1995)

  30. 30

    Schleicher, A. et al. A stereological approach to human cortical architecture: identification and delineation of cortical areas. J. Chem. Neuroanat. 20, 31–47 (2000)

Download references


We thank M. Bouchard for technical assistance. This work was supported by grants from Canadian Institutes of Health Research and the James S. McDonnell Foundation.

Author information

Correspondence to Michael Petrides.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods (DOC 26 kb)

Supplementary Discussion

Clarification of the confusion in the definition of area 45. (DOC 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Region of interest and location of experimental results in the monkey.
Figure 2: Photomicrographs of areas 45, 44 and 6V focused on granular layer IV and adjacent layers III and V.
Figure 3: Mean area of the largest cells in layers III and V of areas 45, 44 and 6V.
Figure 4: Quantitative assessment of the relative granularity of layer IV in architectonic areas 45, 44 and 6V.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.