Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope

Abstract

In autoimmune type 1 diabetes, pathogenic T lymphocytes are associated with the specific destruction of insulin-producing β-islet cells1,2. Identification of the autoantigens involved in triggering this process is a central question. Here we examined T cells from pancreatic draining lymph nodes, the site of islet-cell-specific self-antigen presentation3. We cloned single T cells in a non-biased manner from pancreatic draining lymph nodes of subjects with type 1 diabetes and from non-diabetic controls. A high degree of T-cell clonal expansion was observed in pancreatic lymph nodes from long-term diabetic patients but not from control subjects. The oligoclonally expanded T cells from diabetic subjects with DR4, a susceptibility allele for type 1 diabetes4, recognized the insulin A 1–15 epitope restricted by DR4. These results identify insulin-reactive, clonally expanded T cells from the site of autoinflammatory drainage in long-term type 1 diabetics, indicating that insulin may indeed be the target antigen causing autoimmune diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expanded T-cell clones from diabetic PLN recognize insulin A 1–15 presented by the MHC DRB1*0401 allele.
Figure 2: Specificity of peptide- and T-cell-clone-reactivity.

Similar content being viewed by others

References

  1. Atkinson, M. A. & Maclaren, N. K. The pathogenesis of insulin-dependent diabetes mellitus. N. Engl. J. Med. 331, 1428–1436 (1994)

    Article  CAS  PubMed  Google Scholar 

  2. Eisenbarth, G. S. Type I diabetes mellitus: a chronic autoimmune disease. N. Engl. J. Med. 314, 1360–1368 (1986)

    Article  CAS  PubMed  Google Scholar 

  3. Hoglund, P. et al. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med. 189, 331–339 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomson, G. et al. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am. J. Hum. Genet. 43, 799–816 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Katz, J. D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. Acha-Orbea, H. & McDevitt, H. O. The role of class II molecules in development of insulin-dependent diabetes mellitus in mice, rats and humans. Curr. Top. Microbiol. Immunol. 156, 103–119 (1990)

    CAS  PubMed  Google Scholar 

  7. Haskins, K., Portas, M., Bergman, B., Lafferty, K. & Bradley, B. Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc. Natl Acad. Sci. USA 86, 8000–8004 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wegmann, D. R., Norbury-Glaser, M. & Daniel, D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur. J. Immunol. 24, 1853–1857 (1994)

    Article  CAS  PubMed  Google Scholar 

  9. Londei, M. et al. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis. Proc. Natl Acad. Sci. USA 86, 636–640 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dayan, C. M. et al. Autoantigen recognition by thyroid-infiltrating T cells in Graves disease. Proc. Natl Acad. Sci. USA. 88, 7415–7419 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hafler, D. A. et al. Oligoclonal T-lymphocytes in the cerebrospinal fluid of patients with inflammatory central nervous system diseases. J. Exp. Med. 167, 1625–1644 (1988)

    Article  PubMed  Google Scholar 

  12. Roep, B. O. T-cell responses to autoantigens in IDDM. Diabetes 45, 1147–1156 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Wong, F. S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Med. 5, 1026–1031 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Todd, J. A., Bell, J. I. & McDevitt, H. O. HLA antigens and insulin-dependent diabetes. Nature 333, 710 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Schloot, N. C. et al. Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the third immunology of diabetes society T-cell workshop. J. Autoimmun. 21, 365–376 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Peakman, M. et al. Characterization of preparations of GAD65, proinsulin, and the islet tyrosine phosphatase IA-2 for use in detection of autoreactive T-cells in type 1 diabetes: report of phase II of the Second International Immunology of Diabetes Society Workshop for Standardization of T-cell assays in type 1 diabetes. Diabetes 50, 1749–1754 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Eisenbarth, G. S. et al. Insulin autoimmunity: prediction/precipitation/prevention type 1A diabetes. Autoimmun. Rev. 1, 139–145 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Harrison, L. C. et al. Islet-reactive T cells are a marker of preclinical insulin-dependent diabetes. J. Clin. Invest. 89, 1161–1165 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Astill, T. P., Ellis, R. J., Arif, S., Tree, T. I. M. & Peakman, M. Promiscuous binding of proinsulin peptides to Type 1 diabetes-permissive and- protective HLA class II molecules. Diabetologia 46, 496–503 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Endl, J. et al. Identification of naturally processed T cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J. Clin. Invest. 15, 2405–2415 (1997)

    Article  Google Scholar 

  21. Mycko, M. P. et al. Cross-reactive TCR responses to self antigens presented by different MHC class II molecules. J. Immunol. 173, 1689–1698 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Tian, J., Lehmann, P. & Kaufman, D. Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. J. Exp. Med. 186, 2039–2043 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakano, N., Kikutani, H., Nishimoto, H. & Kishimoto, T. T cell receptor V gene usage of islet β cell-reactive T cells is not restricted in non-obese diabetic mice. J. Exp. Med. 173, 1091–1097 (1991)

    Article  CAS  PubMed  Google Scholar 

  24. Miyazaki, A. et al. Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol. 60, 622–630 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Candeias, S., Katz, J., Benoist, C., Mathis, D. & Haskins, K. Islet-specific T-cell clones from nonobese diabetic mice express heterogeneous T-cell receptors. Proc. Natl Acad. Sci. USA 88, 6167–6170 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baker, F., Lee, M., Chien, Y.-h. & Davis, M. Restricted islet-cell reactive T cell repetoire of early pancreatic islet infiltrates in NOD mice. Proc. Natl Acad. Sci. USA 99, 9374–9379 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sibley, R. K., Sutherland, D. E., Goetz, F. & Michael, A. F. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab. Invest. 53, 132–144 (1985)

    CAS  PubMed  Google Scholar 

  28. Jaeckel, E., Lipes, M. A. & von Boehmer, H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nature Immunol. 5, 1028–1035 (2004)

    Article  CAS  Google Scholar 

  29. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature doi:10.1038/nature03523 (this issue)

  30. Yoon, J. W. et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284, 1183–1187 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Han, M. et al. Invariant or highly conserved TCR α are expressed on double-negative (CD3+CD4-CD8-) and CD8+ T cells. J. Immunol. 163, 301–311 (1999)

    CAS  PubMed  Google Scholar 

  32. Akatsuka, Y., Martin, E., Madonik, A., Barsoukov, A. & Hansen, J. Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: application for assessment of clonal composition. Tissue Antigens 53, 122–134 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Kuchroo and G. Fathman for critical reading of the manuscript. We thank G. Nepom for B cell lines, and R. Neal Smith and N. Kirchhof for expert immunohistochemical and histological tissue staining. These studies were supported by grants to D.A.H. (NIH), to Y.C. (JDRFI Fellowship), to L.B. (NMSS Fellowship) and to S.C.K. (Boston Area Diabetes Endocrinology Research Center). D.A.H. is a recipient of the NIH Javits Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hafler.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Histological examination of pancreas and lymphocytic infiltrate in islets from diabetic subject 3. (PDF 896 kb)

Supplementary Figure S2

Histological examination of pancreas from a long term diabetes subject (2). (PDF 1277 kb)

Supplementary Tables S1, S2, and S3

Supplementary Table S1: oligoclonal Vβ Chain Usage of T-cell clones isolated from subjects with Type 1 diabetes. Supplementary Table S2: oligoclonal Vα Sequences of T-cell clones expressing identical Vβ chains from diabetic pancreatic draining lymph nodes. Supplementary Table S3: TCR Vβ from PLN-derived insulin-reactive Ba.14 T-cell clone is not detected in diabetic subject 2 (Ba) spleen. (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, S., Chen, Y., Bregoli, L. et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435, 224–228 (2005). https://doi.org/10.1038/nature03625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03625

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing