Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals


The marine sedimentary record exhibits evidence for episodes of enhanced organic carbon burial known as ‘oceanic anoxic events’ (OAEs)1,2. They are characterized by carbon-isotope excursions in marine3 and terrestrial4 reservoirs and mass extinction of marine faunas5. Causal mechanisms for the enhancement of organic carbon burial during OAEs are still debated6,7, but it is thought that such events should draw down significant quantities of atmospheric carbon dioxide7. In the case of the Toarcian OAE (183 million years ago), a short-lived negative carbon-isotope excursion in oceanic and terrestrial reservoirs has been interpreted to indicate raised atmospheric carbon dioxide4 caused by oxidation of methane catastrophically released from either marine gas hydrates4 or magma-intruded organic-rich rocks8. Here we test these two leading hypotheses4,8 for a negative carbon isotopic excursion marking the initiation of the Toarcian OAE using a high-resolution atmospheric carbon dioxide record obtained from fossil leaf stomatal frequency9,10. We find that coincident with the negative carbon-isotope excursion carbon dioxide is first drawn down by 350 ± 100 p.p.m.v. and then abruptly elevated by 1,200 ± 400 p.p.m.v, and infer a global cooling and greenhouse warming of 2.5 ± 0.1 °C and 6.5 ± 1 °C, respectively. The pattern and magnitude of carbon dioxide change are difficult to reconcile with catastrophic input of isotopically light methane from hydrates5 as the cause of the negative isotopic signal. Our carbon dioxide record better supports a magma-intrusion hypothesis8, and suggests that injection of isotopically light carbon from the release of thermogenic methane occurred owing to the intrusion of Gondwana coals by Toarcian-aged Karoo-Ferrar dolerites.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Carbon isotope and stomatal index data through the Sorthat Formation.
Figure 2: Carbon dioxide, global temperature and palaeoecological trends through the Toarcian OAE.


  1. Jenkyns, H. C. The Early Toarcian (Jurassic) anoxic event—Stratigraphic, sedimentary, and geochemical evidence. Am. J. Sci. 288, 101–151 (1988)

    Article  ADS  CAS  Google Scholar 

  2. Arthur, M. A., Dean, W. E. & Pratt, L. M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335, 714–717 (1988)

    Article  ADS  Google Scholar 

  3. Jenkyns, H. C. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Phil. Trans. R. Soc. Lond. A 361, 1885–1916 (2003)

    Article  ADS  Google Scholar 

  4. Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Harries, P. J. & Little, C. T. S. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999)

    Article  Google Scholar 

  6. Kerr, A. C. Oceanic plateau formation; a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? J. Geol. Soc. Lond. 155, 619–626 (1998)

    Article  CAS  Google Scholar 

  7. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions; carbonates and organic matter. Chem. Geol. 161, 181–198 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)

    Article  ADS  CAS  Google Scholar 

  9. McElwain, J. C. Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Phil. Trans. R. Soc. Lond. B 353, 83–95 (1998)

    Article  Google Scholar 

  10. Royer, D. L., Berner, R. A. & Beerling, D. J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Koppelhus, E. B. & Nielsen, L. H. Palynostratigraphy and paleoenvironments of the Lower to Middle Jurassic Bagå Formation of Denmark. Palynology 18, 139–194 (1994)

    Article  Google Scholar 

  12. Michelson, O., Nielsen, L. H., Johannessen, P. N., Andsbjerg, J. & Surlyk, F. in The Jurassic of Denmark and Greenland (eds Ineson, J. R. & Surlyk, F.) 147–216 (Geological Survey of Denmark and Greenland Bulletin, Copenhagen, 2003)

    Google Scholar 

  13. McElwain, J. C., Mayle, F. E. & Beerling, D. J. Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. J. Quat. Sci. 17, 21–29 (2002)

    Article  Google Scholar 

  14. Kürschner, W. M. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein Quercus pseudocastanea Goeppert): implications for their use as biosensors of palaeoatmospheric CO2 levels. Rev. Palaeobot. Palynol. 96, 1–30 (1997)

    Article  Google Scholar 

  15. Palfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–750 (2000)

    Article  ADS  Google Scholar 

  16. Cleveland, W. S. & Devlin, S. J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988)

    Article  Google Scholar 

  17. Royer, D. L. et al. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292, 2310–2313 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P. & Parkinson, D. N. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 159, 351–378 (2002)

    Article  CAS  Google Scholar 

  19. Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the Late Pleinsbachian-Early Toarcian interval: a possible link to genesis of an oceanic anoxic event. Earth Planet. Sci. Lett. 212, 307–320 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Vakhrameev, V. A. Jurassic and Cretaceous Floras and Climates of the Earth (Cambridge Univ. Press, Cambridge, 1991)

    Google Scholar 

  21. Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–160 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the oceans. Nature 365, 119–125 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Milkov, A. V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci. Rev. 66, 183–197 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Veevers, J. J., Powell, C. M., Collinson, J. W. & Lopez-Gamundi, O. R. in Permian-Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland (eds Veevers, J. J. & Powell, C. M.) 331–353 (Geological Society of America Memoir, Boulder, 1994)

    Book  Google Scholar 

  25. Elliot, D. H. & Fleming, T. H. Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Gondwana Res. 7, 223–237 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Ballance, P. F. & Watters, W. A. Hydrothermal alteration, contact metamorphism, and authigenesis in Ferrar Supergroup and Beacon Supergroup rocks, Carapace Nunatak, Allan Hills, and Coombs Hills, Victoria Land, Antarctica. NZ J. Geol. Geophys. 45, 71–84 (2002)

    Article  CAS  Google Scholar 

  27. Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090–1104 (2003)

    Article  ADS  Google Scholar 

  28. Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and Late Permian mass extinction. Science 273, 452–457 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Beerling, D. J., Lomas, M. R. & Gröcke, D. R. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. Am. J. Sci. 302, 28–49 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Kothavala, Z., Oglesby, R. J. & Saltzman, B. Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2 . Geophys. Res. Lett. 26, 209–212 (1999)

    Article  ADS  CAS  Google Scholar 

Download references


We thank the Comer Foundation of Science and Education for funding, F. Surlyk for logistical support for fieldwork, I. Glasspool for insights on Karoo basin coal, P. Wagner for statistical assistance, and M. Huber and B. Sageman for critical comments on an earlier version of the manuscript. Scientific discussion with M. Arthur, H.C. Jenkyns and L.R. Kump is also acknowledged. We thank B.S. Cramer for suggestions that greatly improved the manuscript.Author Contributions J.C.M.and J.W.M. were responsible for laboratory data collection. All authors contributed equally to interpretation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jennifer C. McElwain.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Table S1

Mean fossil leaf stomatal density (SD) and index (SI) data from the Sorthat Formation, Bornholm, Denmark. (PDF 58 kb)

Supplementary Table S2

Randomly resampled stomatal indices from mesofossil leaves of the Sorthat Formation, Bornholm Denmark. (PDF 50 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McElwain, J., Wade-Murphy, J. & Hesselbo, S. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing