Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Timescales of shock processes in chondritic and martian meteorites

Abstract

The accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively1,2. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (1 s and 5 km, respectively) than in the martian meteorite (10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (105 to 107 years ago)3 may have originated from the same few square kilometres on Mars.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Trace element maps of high-pressure minerals in Zagami and Tenham meteorites.
Figure 2: Peak shock pressure duration as a function of the cooling speed for the Tenham meteorite.
Figure 3: Diameters of the impact craters on Mars as a function of the impactor vertical speed.

Similar content being viewed by others

References

  1. Wetherill, G. W. Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)

    Article  ADS  CAS  Google Scholar 

  2. Gladman, B. J. & Burns, J. A. Mars meteorite transfer: Simulation. Science 274, 161–162 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Nyquist, L. E. et al. Ages and geologic histories of Martian meteorites. Space Sci. Rev. 96, 105–164 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Stoffler, D. et al. Shock metamorphism and petrography of the Shergotty achondrite. Geochim. Cosmochim. Acta 50, 889–903 (1986)

    Article  ADS  Google Scholar 

  5. Stoffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991)

    Article  ADS  Google Scholar 

  6. Chen, M., Sharp, T. G., El Goresy, A., Wopenka, B. & Xie, X. The majorite-pyrope-magnesiowüstite assemblage: constraints on the history of shock veins in chondrite. Science 271, 1570–1573 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Gillet, P., Chen, C., Dubrovinsky, L. & El Goresy, A. Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287, 1633–1636 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Beck, P., Gillet, P., Gautron, L., Daniel, I. & El Goresy, A. A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett. 219, 1–12 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Langenhorst, F. & Poirier, J. P. “Eclogitic” minerals in a shocked basaltic meteorite. Earth Planet. Sci. Lett. 176, 259–265 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Langenhorst, F. & Poirier, J. P. Anatomy of black veins in Zagami: clues to the formation of high-pressure phase. Earth Planet. Sci. Lett. 184, 37–55 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Malavergne, V., Guyot, F., Benzerara, K. & Martinez, I. Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteorit. Planet. Sci. 36, 1297–1305 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Putnis, A. & Price, G. D. High-pressure (Mg,Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature 280, 217–218 (1979)

    Article  ADS  CAS  Google Scholar 

  13. Langenhorst, F., Joreau, P. & Doukhan, J. C. Thermal and shock metamorphism of the Tenham chondrite: A TEM examination. Geochim. Cosmochim. Acta 59, 1835–1845 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Tomioka, N. & Fujino, K. Natural (Mg,Fe)SiO3-ilmenite and perovskite in the Tenham meteorite. Science 277, 1084–1086 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Agee, C. B., Li, J., Shannon, M. C. & Circone, S. Pressure-temperature phase-diagram for the Allende meteorite. J. Geophys. Res. Solid Earth 100, 17725–17740 (1995)

    Article  CAS  Google Scholar 

  16. Kerschhofer, L., Rubie, D. C., Sharp, T. G., McConnell, J. D. C. & Dupas-Bruzek, C. Kinetics of intracrystalline olivine-ringwoodite transformation. Phys. Earth Planet. Inter. 121, 59–76 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Ohtani, E. et al. Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet. Sci. Lett. 227, 505–515 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Wang, W. & Takahashi, E. Subsolidus and melting experiment of a K-rich basaltic composition to 27 GPa: Implication for the behaviour of potassium in the mantle. Am. Mineral. 84, 357–361 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, Oxford, 1989)

    Google Scholar 

  20. Steel, D. Distributions and moments of asteroid and comet impact speeds upon the Earth and Mars. Planet. Space Sci. 46, 473–478 (1998)

    Article  ADS  Google Scholar 

  21. Head, J. N., Melosh, H. J. & Ivanov, B. A. Martian meteorite launch: High-speed ejecta from small craters. Science 298, 1752–1755 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Jurewicz, A. J. G. & Watson, E. B. Cations in olivine. 2. Diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib. Mineral. Petrol. 99, 186–201 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Barrat, J. A., Blichert-Toft, J., Nesbitt, R. W. & Keller, F. Bulk chemistry of Saharan shergottite Dar al Gani 476. Meteorit. Planet. Sci. 36, 23–29 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Lowry, R. K., Henderson, P. & Nolan, J. Tracer diffusion of some alkali, alkaline-earth and transition element ions in a basaltic and an andesitic melt, and the implications concerning melt structure. Contrib. Mineral. Petrol. 80, 254–261 (1982)

    Article  ADS  CAS  Google Scholar 

  25. Freer, R. Diffusion in silicate minerals and glasses—a data digest and guide to the literature. Contrib. Mineral. Petrol. 76, 440–454 (1981)

    Article  ADS  CAS  Google Scholar 

  26. Dodson, M. H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40, 259–274 (1973)

    Article  ADS  CAS  Google Scholar 

  27. Blundy, J. & Wood, B. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Akaogi, M., Ito, E. & Navrotsky, A. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4—Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res. Solid Earth Planets 94, 15671–15685 (1989)

    Article  Google Scholar 

  29. Warren, P. H. Lunar and Martian meteorite delivery services. Icarus 111, 338–363 (1994)

    Article  ADS  Google Scholar 

  30. Ahrens, T. J., Xia, K. & Coker, D. Shock-Compression of Condensed Matter. (eds Furnish, M. D., Thadhani, N. N. & Horie, Y.) 1393–1396 (American Institute of Physics, New York, 2001)

Download references

Acknowledgements

We thank F. Albarède, B. Reynard and P. McMillan for reading and improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Beck.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, P., Gillet, P., El Goresy, A. et al. Timescales of shock processes in chondritic and martian meteorites. Nature 435, 1071–1074 (2005). https://doi.org/10.1038/nature03616

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03616

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing