Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Widespread magma oceans on asteroidal bodies in the early Solar System


Immediately following the formation of the Solar System, small planetary bodies accreted1, some of which melted to produce igneous rocks2,3. Over a longer timescale (15–33 Myr), the inner planets grew by incorporation of these smaller objects4,5 through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets4, including Earth5. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans2. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta6) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (≥ 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Oxygen isotope variation diagram for HEDs and angrites.
Figure 2: Mass fractionation lines for Mars, Earth, Moon, Vesta and the angrite parent body.


  1. Lugmair, G. W. & Shukloyukov, A. Early solar system events and timescales. Meteorit. Planet. Sci. 36, 1017–1026 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. in Planetary Materials (ed. Papike, J. J.) Ch. 4 (Mineralogical Society of America, Washington DC, 1998)

    Google Scholar 

  3. Nyquist, L. E., Reese, Y., Wiesmann, H., Shih, C.-Y. & Takeda, H. Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on asteroid 4 Vesta. Earth Planet. Sci. Lett. 214, 11–25 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Kleine, T., Mezger, K., Mümker, C., Palme, H. & Bischoff, A. 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Halliday, A. N. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Drake, M. J. The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Buchanan, P. C., Zolensky, M. E. & Reid, A. M. Carbonaceous chondrite clasts in the howardites Bholghati and EET87513. Meteoritics 28, 659–669 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Metzler, K., Bobe, K. D., Palme, H., Spettel, B. & Stöffler, D. Thermal and impact metamorphism on the HED parent asteroid. Planet. Space Sci. 43, 499–525 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Mason, B. Meteorites (Wiley, New York, 1962)

    Google Scholar 

  11. Stolper, E. Experimental petrology of eucrite meteorites. Geochim. Cosmochim. Acta 41, 587–611 (1977)

    Article  ADS  CAS  Google Scholar 

  12. Righter, K. & Drake, M. J. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Boesenberg, J. S. & Delaney, J. S. A model composition of the basaltic achondrite planetoid. Geochim. Cosmochim. Acta 61, 3205–3225 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Agnor, C. & Asphaug, E. Accretion efficiency during planetary collisions. Astrophys. J. 613, L157–L160 (2004)

    Article  ADS  Google Scholar 

  15. Nolan, M. C., Asphaug, E., Greenberg, R. & Melosh, H. J. Impacts on asteroids: Fragmentation, regolith transport, and disruption. Icarus 153, 1–15 (2001)

    Article  ADS  Google Scholar 

  16. Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Reddy, K. P. R., Oh, S. M., Major, L. D. Jr & Cooper, A. R. Oxygen diffusion in fosterite. J. Geophys. Res. 85, 322–326 (1980)

    Article  ADS  CAS  Google Scholar 

  18. Valley, J. W. Stable isotope thermometry at high temperatures. Rev. Mineral. Geochem. 43, 365–402 (2001)

    Article  CAS  Google Scholar 

  19. Taylor, G. J. Core formation in asteroids. J. Geophys. Res. 97, 717–726 (1992)

    Article  Google Scholar 

  20. Glavin, D. P., Kubny, A., Jagoutz, E. & Lugmair, G. W. Mn-Cr isotope systematics of the D'Orbigny angrite. Meteorit. Planet. Sci. 39, 693–700 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. H. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalt. Geochim. Cosmochim. Acta 57, 2123–2139 (1993)

    Article  ADS  CAS  Google Scholar 

  22. McCoy, T. J., Keil, K., Muenow, D. W. & Wilson, L. Partial melting and melt migration in the acapulcoite-lodranite parent body. Geochim. Cosmochim. Acta 61, 639–650 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Guan, Y. & Crozaz, G. Microdistributions and petrogenetic implications of rare earth elements in polymict ureilites. Meteorit. Planet. Sci. 36, 1039–1056 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature 416, 39–61 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Rubie, D. C., Gessman, C. K. & Frost, D. J. Partitioning of oxygen during core formation on Earth and Mars. Nature 429, 58–61 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Mittlefehldt, D. W. & Lindstrom, M. M. Geochemistry of eucrites: Genesis of basaltic eucrites and Hf and Ta as petrogenetic indicators for altered Antarctic eucrites. Geochim. Cosmochim. Acta 67, 1911–1935 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Telesco, C. M. et al. Mid-infrared images of β Pictoris and the possible role of planetesimal collisions in the central disk. Nature 433, 133–136 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Miller, M. F., Franchi, I. A., Sexton, A. S. & Pillinger, C. T. High precision Δ17O measurements of oxygen from silicates and other oxides: method and applications. Rapid Commun. Mass Spectrom. 13, 1211–1217 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Wiechert, U. H., Halliday, A. N., Palme, H. & Rumble, D. Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth Planet. Sci. Lett. 221, 373–382 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Franchi, I. A., Wright, I. P., Sexton, A. S. & Pillinger, C. T. The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657–661 (1999)

    Article  ADS  CAS  Google Scholar 

Download references


We thank M. Drake for comments on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard C. Greenwood.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Table

Oxygen isotope data for HEDs and angrites. (XLS 28 kb)

Supplementary Notes

Model to study a partial melting of a non-equilibrated HED parent body. (XLS 37 kb)

Supplementary Methods

Oxygen isotope analysis using an infrared laser fluorination system. (DOC 26 kb)

Supplementary Discussion

Differences between magma oceans on asteroids and planets and additional references. (DOC 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greenwood, R., Franchi, I., Jambon, A. et al. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing