Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi

Abstract

Arbuscular mycorrhizal (AM) fungi form mutualistic, symbiotic associations with the roots of more than 80% of land plants1. The fungi are incapable of completing their life cycle in the absence of a host root. Their spores can germinate and grow in the absence of a host, but their hyphal growth is very limited. Little is known about the molecular mechanisms that govern signalling and recognition between AM fungi and their host plants. In one of the first stages of host recognition, the hyphae of AM fungi show extensive branching in the vicinity of host roots before formation of the appressorium2,3,4, the structure used to penetrate the plant root. Host roots are known to release signalling molecules that trigger hyphal branching5,6,7, but these branching factors have not been isolated. Here we have isolated a branching factor from the root exudates of Lotus japonicus and used spectroscopic analysis and chemical synthesis to identify it as a strigolactone, 5-deoxy-strigol. Strigolactones are a group of sesquiterpene lactones, previously isolated as seed-germination stimulants for the parasitic weeds Striga and Orobanche8. The natural strigolactones 5-deoxy-strigol, sorgolactone and strigol, and a synthetic analogue, GR24, induced extensive hyphal branching in germinating spores of the AM fungus Gigaspora margarita at very low concentrations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyphal branching of G. margarita induced by lipophilic fractions from root exudates of L. japonicus using the paper disk diffusion method.
Figure 2: Purification of BF by HPLC on a semi-preparative C 18 reverse-phase column.
Figure 3: Spectroscopic analysis of BF isolated from L. japonicus.
Figure 4: Hyphal branching activity of BF and natural strigolactones on G. margarita.

Similar content being viewed by others

References

  1. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic, San Diego, 1997)

    Google Scholar 

  2. Mosse, B. & Hepper, C. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5, 215–223 (1975)

    Article  Google Scholar 

  3. Giovannetti, M., Sbrana, C., Avio, L., Citernesi, A. S. & Logi, C. Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol. 125, 587–593 (1993)

    Article  Google Scholar 

  4. Giovannetti, M., Sbrana, C. & Logi, C. Early process involved in host recognition by arbuscular mycorrhizal fungi. New Phytol. 127, 703–709 (1994)

    Article  Google Scholar 

  5. Giovannetti, M., Sbrana, C., Silvia, A. & Avio, L. Analysis of factors involved in fungal recognition response to host-derived signals by arbuscular mycorrhizal fungi. New Phytol. 133, 65–71 (1996)

    Article  Google Scholar 

  6. Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R. & Bécard, G. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant Microbe Interact. 13, 693–698 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Nagahashi, G. & Douds, D. D. Partial separation of root exudate compounds and their effects upon the growth of germinated spores of AM fungi. Mycol. Res. 104, 1453–1464 (2000)

    Article  Google Scholar 

  8. Bouwmeester, H. J., Matusova, R., Zhongkui, S. & Beale, M. H. Secondary metabolite signalling in host-parasitic plant interactions. Curr. Opin. Plant Biol. 6, 358–364 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Schussler, A., Schwarzott, D. & Walker, C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413–1421 (2001)

    Article  Google Scholar 

  10. Nagahashi, G. & Douds, D. D. A rapid and sensitive bioassay with practical application for studies on interactions between root exudates and arbuscular mycorrhizal fungi. Biotechnol. Tech. 13, 893–897 (1999)

    Article  CAS  Google Scholar 

  11. Tamasloukht, M. et al. Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol. 131, 1468–1478 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E. & Egley, G. H. Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Science 154, 1189–1190 (1966)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cook, C. E. et al. Germination stimulants. II. The structure of strigol—A potent seed germination stimulant for witchweed (Striga lutea Lour.). J. Am. Chem. Soc. 94, 6198–6199 (1972)

    Article  CAS  Google Scholar 

  14. Hauck, C., Müller, S. & Schildknecht, H. A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J. Plant Physiol. 139, 474–478 (1992)

    Article  CAS  Google Scholar 

  15. Müller, S., Hauck, C. & Schildknecht, H. Germination stimulants produced by Vigna unguiculata Walp cv Saunders Upright. J. Plant Growth Regul. 11, 77–84 (1992)

    Article  Google Scholar 

  16. Siame, B. A., Weerasuriya, Y., Wood, K., Ejeta, G. & Butler, L. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J. Agric. Food Chem. 41, 1486–1491 (1993)

    Article  CAS  Google Scholar 

  17. Yokota, T., Sakai, H., Okuno, K., Yoneyama, K. & Takeuchi, Y. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49, 1967–1973 (1998)

    Article  CAS  Google Scholar 

  18. Johnson, A. W. et al. The preparation of synthetic analogues of strigol. J. Chem. Soc. Perkin Trans. I 1981, 1734–1743 (1981)

    Article  Google Scholar 

  19. Frischmuth, K. et al. Routes to derivatives of strigol (the witchweed germination factor) modified in the 5-position. Tetrahedron 47, 9793–9806 (1991)

    Article  CAS  Google Scholar 

  20. Bergmann, C. et al. Stimulation of Orobanche crenata seed germination by (+ )-strigol and structural analogues dependence on constitution and configuration of the germination stimulants. J. Plant Physiol. 142, 338–342 (1993)

    Article  CAS  Google Scholar 

  21. Sugimoto, Y., Wigchert, S. C. M., Thuring, J. W. J. F. & Zwanenburg, B. Synthesis of all eight stereoisomers of the germination stimulant sorgolactone. J. Org. Chem. 63, 1259–1267 (1998)

    Article  CAS  Google Scholar 

  22. Nakano, S., Todoroki, Y., Hirai, N. & Ohigashi, H. Synthesis and biological activity of 7′-, 8′-, and 9′-alkyl analogues of abscisic acid. Biosci. Biotechnol. Biochem. 59, 1699–1706 (1995)

    Article  CAS  Google Scholar 

  23. Brooks, D. W., Bevinakatti, H. S. & Powell, D. R. The absolute structure of (+ )-strigol. J. Org. Chem. 50, 3779–3781 (1985)

    Article  CAS  Google Scholar 

  24. Yasuda, N., Sugimoto, Y., Kato, M., Inanaga, S. & Yoneyama, K. (+ )-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62, 1115–1119 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Mangnus, E. M. & Zwanenburg, B. Tentative molecular mechanisms for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogues. J. Agric. Food Chem. 40, 1066–1070 (1992)

    Article  CAS  Google Scholar 

  26. Westwood, J. H. Characterization of the Orobanche-Arabidopsis system for studying parasite-host interactions. Weed Sci. 48, 742–748 (2000)

    Article  CAS  Google Scholar 

  27. Sato, D. et al. Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 51, 1162–1168 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Yoneyama, K., Takeuchi, Y. & Yokota, T. Production of clover broomrape seed germination stimulants by red clover requires nitrate but is inhibited by phosphate and ammonium. Physiol. Plant. 112, 25–30 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Parniske, M. Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 7, 414–421 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Bécard, G. & Fortin, J. A. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108, 211–218 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Kawaguchi for discussions and critical reading of the manuscript, Y. Sugimoto for providing (± )-sorgolactone, GR24 and (+ )-strigol, and K. Yoneyama for discussions and critical reading of the manuscript. This work was supported by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohki Akiyama.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table S1

Table of physicochemical data for synthetic (±)-5-deoxy-strigol. (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, K., Matsuzaki, Ki. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005). https://doi.org/10.1038/nature03608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03608

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing