Plate-wide stress relaxation explains European Palaeocene basin inversions

Abstract

During Late Cretaceous and Cenozoic times, many Palaeozoic and Mesozoic rifts and basin structures in the interior of the European continent underwent several phases of inversion (the process of shortening a previously extensional basin)1. The main phases occurred during the Late Cretaceous and Middle Palaeocene, and have been previously explained by pulses of compression, mainly from the Alpine orogen2,3,4,5. Here we show that the main phases differed both in structural style and cause. The Cretaceous phase was characterized by narrow uplift zones, reverse activation of faults, crustal shortening, and the formation of asymmetric marginal troughs. In contrast, the Middle Palaeocene phase was characterized by dome-like uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence-related inversion on relaxation of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume6 or the drop in the north–south convergence rate between Africa and Europe7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Geological profiles.
Figure 2: Mechanisms of primary and secondary inversion.
Figure 3: Isopach signature of inversion movements.

References

  1. 1

    Voigt, E. Über Randtröge vor Schollenrändern und ihre Bedeutung im Gebiet der Mitteleuropäischen Senke und angrenzender Gebiete. Z. Deutsch. Geol. Gesell. 114, 378–418 (1962)

    Google Scholar 

  2. 2

    Ziegler, P. A. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland – a geodynamic model. Tectonophysics 137, 389–420 (1987)

    ADS  Article  Google Scholar 

  3. 3

    Ziegler, P. A. Geological Atlas of Western and Central Europe 2nd edn (Shell International Petroleum Maatschappij B.V., Geological Society Pubishing House, Bath, 1990)

    Google Scholar 

  4. 4

    Ziegler, P. A., Cloetingh, S. & van Wees, J. D. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252, 7–22 (1995)

    ADS  Article  Google Scholar 

  5. 5

    Ziegler, P. A., van Wees, J. D. & Cloetingh, S. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300, 103–129 (1998)

    ADS  Article  Google Scholar 

  6. 6

    White, N. J. & Lovell, B. Measuring the pulse of a plume with the sedimentary record. Nature 387, 888–891 (1997)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Rosenbaum, G., Lister, G. S. & Duboz, C. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359, 117–129 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Erlström, M., Thomas, S. A., Deeks, N. & Sivhed, U. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area. Tectonophysics 271, 191–225 (1997)

    ADS  Article  Google Scholar 

  9. 9

    Nielsen, S. B. & Hansen, D. L. Physical explanation of the formation and evolution of inversion zones and marginal troughs. Geology 28, 875–878 (2000)

    ADS  Article  Google Scholar 

  10. 10

    Hansen, D. L., Nielsen, S. B. & Lykke-Andersen, H. The post-Triassic evolution of the Sorgenfrei-Tornquist Zone – results from thermo mechanical modelling. Tectonophysics 328, 245–267 (2000)

    ADS  Article  Google Scholar 

  11. 11

    Hansen, D. L. & Nielsen, S. B. Why rifts invert in compression. Tectonophysics 373, 5–24 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Clemmensen, A. & Thomsen, E. Palaeoenvironmental changes across the Danian-Selandian boundary in the North Sea Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 351–394 (2005)

    Article  Google Scholar 

  13. 13

    Lambeck, K., Cloetingh, S. & McQueen, H. Intraplate stress and apparent changes in sea level: the basins of Northwestern Europe. Can. Soc. Petrol. Geol. Mem. 12, 259–268 (1987)

    Google Scholar 

  14. 14

    Gregersen, S., Voss, P. & TOR Working Group. Summary of project TOR: delineation of a stepwise, sharp, deep lithosphere transition across Germany–Denmark–Sweden. Tectonophysics 360, 61–73 (2002)

    ADS  Article  Google Scholar 

  15. 15

    Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M. & Van Wees, D.-J. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics 252, 179–195 (1995)

    ADS  Article  Google Scholar 

  16. 16

    Lamarche, J., Scheck, M. & Lewerenz, B. Heterogeneous inversion of the Mid-Polish Trough related to crustal architecture, sedimentary patterns and structural inheritance. Tectonophysics 373, 141–159 (2003)

    Article  Google Scholar 

  17. 17

    Vejbæk, O. V. & Andersen, C. Post mid-Cretaceous inversion tectonics in the Danish Central Graben. Bull. Geol. Soc. Denmark 49, 129–144 (2002)

    Google Scholar 

  18. 18

    Clausen, O. R. & Korstgård, J. A. Tertiary tectonic evolution along the Arne-Elin Trend in the Danish Central Trough. Terra Nova 5, 233–243 (1993)

    ADS  Article  Google Scholar 

  19. 19

    de Jager, J. Inverted basins in the Netherlands, similarities and differences. Neth. J. Geosci. 4, 355–366 (2003)

    Google Scholar 

  20. 20

    Baldschuhn, R., Best, G. & Kockel, F. N. in Generation, Accumulation and Production of Europe's Hydrocarbons (ed. Spencer, A. M.) 149–159 (Spec. Publ. 1, European Association of Petroleum Geoscientists, Oxford Univ. Press, Oxford, 1991)

    Google Scholar 

  21. 21

    Kockel, F. Inversion structures in Central Europe—Expressions and reasons, an open discussion. Neth. J. Geosci. 82, 367–382 (2003)

    Google Scholar 

  22. 22

    Lake, S. D. & Karner, G. G. The structure and evolution of the Wessex Basin, southern England: an example of inversion tectonics. Tectonophysics 137, 347–378 (1987)

    ADS  Article  Google Scholar 

  23. 23

    Jolley, D. W. Palynostratigraphy and depositional history of the Paleocene Ormesby/Thanet depositional sequence set in southeastern England and its correlation with continental West Europe and the Lista Formation, North Sea. Rev. Palaeobot. Palynol. 99, 265–315 (1998)

    Article  Google Scholar 

  24. 24

    Mortimore, R. N. & Pomerol, B. Upper Cretaceous tectonic phases and end Cretaceous inversion in the Chalk of the Anglo-Paris Basin. Proc. Geol. Ass. 108, 231–255 (1997)

    Article  Google Scholar 

  25. 25

    Worum, G. & Michon, L. Implications of continuous structural inversion in the West Netherlands Basin for understanding controls on Palaeogene deformation in NW Europe. J. Geol. Soc. Lond. 162, 73–85 (2005)

    Article  Google Scholar 

  26. 26

    de Lugt, I. R., van Wees, J. D. & Wong, Th. E. in Dynamics of Sedimentary Basin Inversion: Observations and Modelling (eds Nielsen, S. B. & Bayer, U.) Tectonophysics 373 (Spec. Iss.), 141–159 (2003).

  27. 27

    van Hoorn, B. Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics 137, 239–284 (1987)

    ADS  Article  Google Scholar 

  28. 28

    Steurbaut, E. High-resolution holostratigraphy of Middle Paleocene to Early Eocene strata in Belgium and adjacent areas. Palaeontographica Abt. A 247, 91–156 (1998)

    Google Scholar 

  29. 29

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Vinken, R. et al. The Northwest European Tertiary Basin. Isopach map of Middle-Late Paleocene deposits. Geol. Jb. 100, 1–508 (1988)

    Google Scholar 

  31. 31

    Dadlez, R., Marek, S. & Pokorski, J. Geological Map of Poland Without Cainozoic Deposits (Polish Geological Institute, Warsaw, 2000)

    Google Scholar 

Download references

Acknowledgements

This work was completed during project CENMOVE, financed by the Danish Natural Science Research Council. D.L.H. thanks the Carlsberg Foundation for support. L. Mackay and C. Beaumont are thanked for reviews. M. Jarosinsky, F. Kockel, J. Korstgaard, R. Mortimore, V. Otto, P. Poprawa and O. Vejbæk are thanked for discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Søren B. Nielsen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nielsen, S., Thomsen, E., Hansen, D. et al. Plate-wide stress relaxation explains European Palaeocene basin inversions. Nature 435, 195–198 (2005). https://doi.org/10.1038/nature03599

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.