Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simulations of the formation, evolution and clustering of galaxies and quasars

Abstract

The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The dark matter density field on various scales.
Figure 2: Differential halo number density as a function of mass and epoch.
Figure 3: Environment of a ‘first quasar candidate’ at high and low redshifts.
Figure 4: Galaxy two-point correlation function, ξ(r ), at the present epoch as a function of separation r.
Figure 5: Galaxy clustering as a function of luminosity and colour.
Figure 6: Power spectra of the dark matter and galaxy distributions in the baryon oscillation region.

References

  1. Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. 148, 1–27 (2003)

    ADS  Article  Google Scholar 

  2. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    ADS  Article  Google Scholar 

  3. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    ADS  Article  Google Scholar 

  4. Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    ADS  Article  Google Scholar 

  5. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366, 429–433 (1993)

    ADS  CAS  Article  Google Scholar 

  6. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985)

    ADS  CAS  Article  Google Scholar 

  7. Colberg, J. M. et al. Clustering of galaxy clusters in cold dark matter universes. Mon. Not. R. Astron. Soc. 319, 209–214 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Evrard, A. E. et al. Galaxy clusters in Hubble volume simulations: Cosmological constraints from sky survey populations. Astrophys. J. 573, 7–36 (2002)

    ADS  Article  Google Scholar 

  9. Wambsganss, J., Bode, P. & Ostriker, J. P. Giant arc statistics in concord with a concordance lambda cold dark matter universe. Astrophys. J. 606, L93–L96 (2004)

    ADS  Article  Google Scholar 

  10. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996)

    ADS  CAS  Article  Google Scholar 

  11. Jenkins, A. et al. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 321, 372–384 (2001)

    ADS  CAS  Article  Google Scholar 

  12. Reed, D. et al. Evolution of the mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 346, 565–572 (2003)

    ADS  Article  Google Scholar 

  13. Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61–75 (2002)

    ADS  Article  Google Scholar 

  14. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)

    ADS  Article  Google Scholar 

  15. Efstathiou, G. & Rees, M. J. High-redshift quasars in the Cold Dark Matter cosmogony. Mon. Not. R. Astron. Soc. 230, 5–11 (1988)

    ADS  Article  Google Scholar 

  16. Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies. – I. Results at z = 0. Mon. Not. R. Astron. Soc. 328, 726–750 (2001)

    ADS  Article  Google Scholar 

  17. Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and quasars. Mon. Not. R. Astron. Soc. 311, 576–588 (2000)

    ADS  Article  Google Scholar 

  18. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991)

    ADS  Article  Google Scholar 

  19. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993)

    ADS  CAS  Article  Google Scholar 

  20. Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. A recipe for galaxy formation. Mon. Not. R. Astron. Soc. 271, 781–806 (1994)

    ADS  Article  Google Scholar 

  21. Baugh, C. M., Cole, S. & Frenk, C. S. Evolution of the Hubble sequence in hierarchical models for galaxy formation. Mon. Not. R. Astron. Soc. 283, 1361–1378 (1996)

    ADS  Article  Google Scholar 

  22. Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–1110 (1999)

    ADS  CAS  Article  Google Scholar 

  23. Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. Clustering of galaxies in a hierarchical universe. – I. Methods and results at z = 0. Mon. Not. R. Astron. Soc. 303, 188–206 (1999)

    ADS  Article  Google Scholar 

  24. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649–1659 (2003)

    ADS  Article  Google Scholar 

  25. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars. Astron. J. 128, 515–522 (2004)

    ADS  CAS  Article  Google Scholar 

  26. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002)

    ADS  Article  Google Scholar 

  27. Merritt, D. & Ferrarese, L. Black hole demographics from the MBH-σ relation. Mon. Not. R. Astron. Soc. 320, L30–L34 (2001)

    ADS  Article  Google Scholar 

  28. Hawkins, E. et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the universe. Mon. Not. R. Astron. Soc. 346, 78–96 (2003)

    ADS  CAS  Article  Google Scholar 

  29. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793–808 (2000)

    ADS  CAS  Article  Google Scholar 

  30. Weinberg, D. H., Davé, R., Katz, N. & Hernquist, L. Galaxy clustering and galaxy bias in a ΛCDM universe. Astrophys. J. 601, 1–21 (2004)

    ADS  CAS  Article  Google Scholar 

  31. Padilla, N. D. & Baugh, C. M. The power spectrum of galaxy clustering in the APM survey. Mon. Not. R. Astron. Soc. 343, 796–812 (2003)

    ADS  Article  Google Scholar 

  32. Zehavi, I. et al. On departures from a power law in the galaxy correlation function. Astrophys. J. 608, 16–24 (2004)

    ADS  CAS  Article  Google Scholar 

  33. Norberg, P. et al. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering. Mon. Not. R. Astron. Soc. 328, 64–70 (2001)

    ADS  Article  Google Scholar 

  34. Zehavi, I. et al. Galaxy clustering in early Sloan Digital Sky Survey redshift data. Astrophys. J. 571, 172–190 (2002)

    ADS  Article  Google Scholar 

  35. Madgwick, D. S. et al. The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type. Mon. Not. R. Astron. Soc. 344, 847–856 (2003)

    ADS  Article  Google Scholar 

  36. de Bernardis, P. et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    ADS  CAS  Article  Google Scholar 

  37. Mauskopf, P. D. et al. Measurement of a peak in the Cosmic Microwave Background power spectrum from the North American test flight of Boomerang. Astrophys. J. 536, L59–L62 (2000)

    ADS  CAS  Article  Google Scholar 

  38. Blake, C. & Glazebrook, K. Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler. Astrophys. J. 594, 665–673 (2003)

    ADS  CAS  Article  Google Scholar 

  39. Jenkins, A. et al. Evolution of structure in cold dark matter universes. Astrophys. J. 499, 20–40 (1998)

    ADS  Article  Google Scholar 

  40. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986)

    ADS  CAS  Article  Google Scholar 

  41. Adelberger, K. L. et al. A counts-in-cells analysis of Lyman-break galaxies at redshift Z = 3. Astrophys. J. 505, 18–24 (1998)

    ADS  Article  Google Scholar 

  42. Cole, S. et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. (submitted); preprint at http://xxx.lanl.gov/astro-ph/0501174 (2005)

  43. Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. (submitted); preprint at http://xxx.lanl.gov/astro-ph/0501171 (2005)

  44. Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations. N. Astron. 6, 79–117 (2001)

    ADS  CAS  Article  Google Scholar 

  45. Xu, G. A new parallel n-body gravity solver: TPM. Astrophys. J. Suppl. 98, 355–366 (1995)

    ADS  Article  Google Scholar 

  46. Barnes, J. & Hut, P. A hierarchical O(N logN) force-calculation algorithm. Nature 324, 446–449 (1986)

    ADS  Article  Google Scholar 

  47. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles Ch. 5 (McGraw-Hill, New York, 1981)

    MATH  Google Scholar 

  48. Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039–1063 (2001)

    ADS  Article  Google Scholar 

  49. White, S. D. M. in Cosmology and Large-Scale Structure (eds Schaefer, R., Silk, J., Spiro, M. & Zinn-Justin, J.) Ch. 8 (Elsevier, Dordrecht, 1996)

    Google Scholar 

  50. Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to Cosmic Microwave Background anisotropies. Astrophys. J. 469, 437–444 (1996)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

The computations reported here were performed at the Rechenzentrum der Max-Planck-Gesellschaft in Garching, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Springel.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This details the physical model used to compute the galaxy population, and gives a short summary of the simulation method. Where appropriate, further references to relevant literature for our methodology are included. (PDF 255 kb)

Supplementary Video

This computer animation visualizes the dark matter distribution of the simulated universe at the present epoch, in a slice of thickness 15 Mpc/h. A zoom over several decades in length-scale onto one of the many rich clusters of galaxies is shown, highlighting the morphology of structure of the universe on different scales as well as the large dynamic range of the millennium simulation. (To play this high-resolution movie on Windows or Apple computers, you may have to install the `divx'-codec, available for free at www.divx.com). (AVI 11065 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Springel, V., White, S., Jenkins, A. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005). https://doi.org/10.1038/nature03597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03597

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing