Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the myosin VI motor reveals the mechanism of directionality reversal

Abstract

Here we solve a 2.4-Å structure of a truncated version of the reverse-direction myosin motor, myosin VI, that contains the motor domain and binding sites for two calmodulin molecules. The structure reveals only minor differences in the motor domain from that in plus-end directed myosins, with the exception of two unique inserts. The first is near the nucleotide-binding pocket and alters the rates of nucleotide association and dissociation. The second unique insert forms an integral part of the myosin VI converter domain along with a calmodulin bound to a novel target motif within the insert. This serves to redirect the effective ‘lever arm’ of myosin VI, which includes a second calmodulin bound to an ‘IQ motif’, towards the pointed (minus) end of the actin filament. This repositioning largely accounts for the reverse directionality of this class of myosin motors. We propose a model incorporating a kinesin-like uncoupling/docking mechanism to provide a full explanation of the movements of myosin VI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of myosin VI.
Figure 2: Insert 1 modulates nucleotide binding and switch I flexibility.
Figure 3: Reorientation of the myosin VI lever arm by its unique converter.
Figure 4: A new CaM-binding motif that interacts strongly with 4Ca 2+ -CaM.
Figure 5: Directionality of movement and power stroke in myosin motors.

Similar content being viewed by others

References

  1. Berg, J. S., Powell, B. C. & Cheney, R. E. A millennial myosin census. Mol. Biol. Cell 12, 780–794 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Hasson, T. Myosin-VI: two distinct roles in endocytosis. J. Cell Sci. 116, 3453–3461 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Buss, F., Spudich, G. & Kendrick-Jones, J. Myosin VI: Cellular functions and motor properties. Annu. Rev. Cell Dev. Biol. 20, 649–676 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Millo, H., Leaper, K., Lazou, V. & Bownes, M. Myosin VI plays a role in cell-cell adhesion during epithelial morphogenesis. Mech. Dev. 121, 1335–1351 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Geeves, M. A. & Holmes, K. C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Purcell, T. J., Morris, C., Spudich, J. A. & Sweeney, H. L. Role of the lever arm in the processive stepping of myosin V. Proc. Natl Acad. Sci. USA 99, 14159–14164 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakamoto, T. et al. Neck length and processivity of myosin V. J. Biol. Chem. 278, 29201–29207 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Ruff, C., Furch, M., Brenner, B., Manstein, D. J. & Meyhofer, E. Single-molecule tracking of myosins with genetically engineered amplifier domains. Nature Struct. Biol. 8, 226–229 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Rock, R. S. et al. Myosin VI is a processive, backwards motor with a large step size. Proc. Natl Acad. Sci. USA 98, 13655–13659 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishikawa, S. et al. Class VI myosin moves processively along actin filaments backward with large steps. Biochem. Biophys. Res. Commun. 290, 311–317 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Bahloul, A. et al. The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc. Natl Acad. Sci. USA 101, 4787–4792 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rock, R. S. et al. A flexible domain is essential for the large step size and processivity of myosin VI. Mol. Cell 17, 603–609 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Homma, K., Yoshimura, M., Saito, J., Ikebe, R. & Ikebe, M. The core of the motor domain determines the direction of myosin movement. Nature 412, 831–834 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Coureux, P.-D. et al. A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Reubold, T. F., Eschenburg, S., Becker, A., Kull, F. J. & Manstein, D. J. A structural model for actin-induced nucleotide release in myosin. Nature Struct. Biol. 10, 826–830 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Coureux, P.-D., Sweeney, H. L. & Houdusse, A. Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. 23, 4527–4537 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holmes, K. C., Schröeder, R. R., Sweeney, H. L. & Houdusse, A. The structure of the rigor complex and its implications for the power stroke. Phil. Trans. R. Soc. Lond. B 359, 1819–1828 (2004)

    Article  CAS  Google Scholar 

  20. De La Cruz, E. M., Ostap, E. M. & Sweeney, H. L. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373–32381 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sweeney, H. L. & Houdusse, A. The motor mechanism of myosin V: insights for muscle contraction. Phil. Trans. R. Soc. Lond. B 359, 1829–1842 (2004)

    Article  CAS  Google Scholar 

  23. Rosenfeld, S. S., Houdusse, A. & Sweeney, H. L. Magnesium regulates ADP dissociation from myosin V. J. Biol. Chem. 280, 6072–6079 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Meador, W. E., Means, A. R. & Quiocho, F. A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin–peptide complex. Science 257, 1251–1255 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fallon, J. L. & Quiocho, F. A. A closed compact structure of native Ca2+-calmodulin. Structure 11, 1303–1307 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Altman, D., Sweeney, H. L. & Spudich, J. A. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737–749 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Tsiavaliaris, G., Fujita-Becker, S. & Manstein, D. J. Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–561 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block, S. M. Stepping and stretching: how kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18530–18536 (2003)

    Google Scholar 

  31. Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gyorgyi, A. G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. Yildiz, A. et al. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem. 279, 37223–37226 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Robblee, J. P., Olivares, A. O. & De la Cruz, E. M. Mechanism of nucleotide binding to actomyosin VI: evidence for allosteric head-head communication. J. Biol. Chem. 279, 38608–38617 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, N., Ohkura, R. & Sutoh, K. Dictyostelium myosin II mutations that uncouple the converter swing and ATP hydrolysis cycle. Biochemistry 42, 90–95 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Collaborative Computational Project No. 4., The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  37. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  38. Roussel, A. & Cambillaud, C. Silicon Graphics Geometry Partner Directory 77–78 (Silicon Graphics, Mountain View, California, 1989)

    Google Scholar 

  39. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  Google Scholar 

  40. Perrakis, A., Morris, R. M. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  PubMed  Google Scholar 

  41. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  42. Houdusse, A., Szent-Györgyi, A. & Cohen, C. Three conformational states of scallop myosin subfragment S1. Proc. Natl Acad. Sci. USA 97, 11238–11243 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of the European Synchrotron Radiation Facility for assistance during data collection, A. Li and D. Garbett for technical assistance in preparing the recombinant proteins, and J. Cicolari for assistance in crystallization experiments. This work was supported by a grant from the National Institutes of Health (NIAMS) to H.L.S and A.H., grants from the CNRS and the ARC to A.H., and predoctoral fellowships from the Quebec government and the FRM to A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Houdusse.

Ethics declarations

Competing interests

Atomic coordinates and structure factors have been deposited in the Protein Data Bank under the accession numbers 2BKH and r2bkhsf for MDins2 and 2BKI and r2bkisf for long MDins2IQ. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Additional information on the methods used in this study. (DOC 78 kb)

Supplementary Data

Analysis of the role of insert1 in myosin VI kinetics. (DOC 41 kb)

Supplementary Table S1

Steady-state and transient kinetic parameters of myosin VI short MDins2IQ with and without insert-1. (DOC 33 kb)

Supplementary Table S2

Data collection and refinement statistics (DOC 53 kb)

Supplementary Figure S1

Lever arm of myosin VI MDins2IQ. Shown is a ribbon representation of the lever arm of the myosin VI MDins2IQ structure. The electron density map clearly shows that the long heavy chain helix found for the insert2 sequence (dark purple) remains straight and extends to form the first part of the IQ motif (cyan), which binds the C-terminal semi-open lobe of an apo-calmodulin (yellow). Variability is however observed in the orientation of the second part of the IQ motif and in most of the helices of the N-terminal lobe of its associated CaM. These regions of higher disorder were not included in the final coordinates and are shown in white in this figure. They are modelled using the coordinates of a Ca2+-free CaM bound to the first IQ motif from mouse myosin V (A.H. unpublished data). (PDF 1360 kb)

Supplementary Movie S1

The 50kDa cleft is not totally closed in this structure of the nucleotide-free Myosin VI motor. Cleft closure occur via interactions between the U50kDa (blue) and L50kDa (white) residues on either side of the cleft. These are only found in the rigor-like myosin V structure. The cleft is totally open in the myosin V post-rigor state. In the myosin VI structure, the cleft is slightly more closed than that of the Dictyostelium discoideum myosin II structure in the absence of nucleotide, but these two structures differ from the myosin V structure and do not correspond to the rigor-like state. (GIF 762 kb)

Supplementary Movie S2

The distortion of the central β-sheet that controls rearrangements in the myosin motor domain differs between Myosin V and VI. (GIF 342 kb)

Supplementary Movie S3

The SH1 helix / N-terminal subdomain interface differs between Myosin V and VI. (GIF 501 kb)

Supplementary Movie S4

Directionality and power-stroke in myosin motors. Animation related to Figure 5. (GIF 1547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ménétrey, J., Bahloul, A., Wells, A. et al. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–785 (2005). https://doi.org/10.1038/nature03592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03592

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing