Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An inhibitor of Bcl-2 family proteins induces regression of solid tumours

Abstract

Proteins in the Bcl-2 family are central regulators of programmed cell death1, and members that inhibit apoptosis, such as Bcl-XL and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy2. Bcl-XL expression correlates with chemo-resistance of tumour cell lines3, and reductions in Bcl-2 increase sensitivity to anticancer drugs4 and enhance in vivo survival5. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored6,7,8,9,10,11,12,13,14,15, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein–protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-XL and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds7,8,9,10,11,12,13,14,15. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Generation of ABT-737.
Figure 2: ABT-737 antagonizes anti-apoptotic Bcl-2 family proteins.
Figure 3: Cell-based activity of ABT-737.
Figure 4: In vivo anti-tumour activity of ABT-737.

References

  1. 1

    Daniel, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004)

    Article  Google Scholar 

  2. 2

    Kirkin, V., Joos, S. & Zörnis, M. The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta 1644, 229–249 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Amundson, S. A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000)

    CAS  Google Scholar 

  4. 4

    Reed, J. C. Promise and problems of Bcl-2 antisense therapy. J. Natl Cancer Inst. 89, 988–990 (1997)

    CAS  Article  Google Scholar 

  5. 5

    Letai, A., Sorcinelli, M. D., Beard, C. & Korsmeyer, S. J. Antiapoptotic Bcl-2 is required for maintenance of a model leukemia. Cancer Cell 6, 241–249 (2004)

    CAS  Article  Google Scholar 

  6. 6

    Klasa, R. J., Gillum, A. M., Klem, R. E. & Frankel, S. R. Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev. 12, 193–213 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Kutzki, O. et al. Development of a potent Bcl-XL antagonist based on α-helix mimicry. J. Am. Chem. Soc. 124, 11838–11839 (2002)

    CAS  Article  Google Scholar 

  8. 8

    Tzung, S.-P. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biol. 3, 183–191 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Becattini, B. et al. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-XL . Chem. Biol. 11, 389–395 (2004)

    CAS  Article  Google Scholar 

  10. 10

    Kitada, S. et al. Discovery, characterization, and structure—activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem. 46, 4259–4264 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Wang, J.-L. et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl Acad. Sci. USA 97, 7124–7129 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL . Nature Cell Biol. 3, 173–182 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Enyedy, I. J. et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem. 44, 4313–4324 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Baell, J. B. & Huang, D. C. S. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem. Pharm. 64, 851–863 (2002)

    CAS  Article  Google Scholar 

  16. 16

    Petros, A. M., Olejniczak, E. T. & Fesik, S. W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83–94 (2004)

    CAS  Article  Google Scholar 

  17. 17

    Kelekar, A. & Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324–330 (1998)

    CAS  Article  Google Scholar 

  18. 18

    Huang, D. C. & Strasser, A. BH3-only proteins—essential initiators of apoptotic cell death. Cell 103, 839–842 (2000)

    CAS  Article  Google Scholar 

  19. 19

    Sattler, M. et al. Structure of Bcl-XL-Bak peptide complex: Recognition between regulators of apoptosis. Science 275, 983–986 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Mao, H. et al. Rational design of diflunisal analogues with reduced affinity for human serum albumin. J. Am. Chem. Soc. 123, 10429–10435 (2001)

    CAS  Article  Google Scholar 

  22. 22

    Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Wei, M. C. et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Fearon, E. R. et al. Karyoplasmic interaction selection strategy: A general strategy to detect protein-protein interactions in mammalian cells. Proc. Natl Acad. Sci. USA 89, 7958–7962 (1992)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Petros, A. M. et al. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl Acad. Sci. USA 98, 3012–3017 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Mao, H., Gunasekera, A. H. & Fesik, S. W. Expression, refolding, and isotopic labeling of human serum albumin domains for NMR spectroscopy. Protein Express. Purif. 20, 492–499 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Brunger, A. T. X-PLOR Version 3.1 (Yale Univ. Press, New Haven/London, 1992)

    Google Scholar 

  29. 29

    Zhang, H., Nimmer, P., Rosenberg, S. H., Ng, S.-C. & Joseph, M. Development of a high-throughput fluorescence polarization assay for Bcl-XL . Anal. Biochem. 307, 70–75 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Wang, Z.-X. An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett. 360, 111–114 (1995)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. J. Kipps, L. Rassenti, J. Gribben and L. Vallat for CLL Research Consortium samples, E. Monosov for assistance with confocal imaging, C. Rudin and C. Hann for H345 xenograft studies, and S. Ackler for compound formulation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Stephen W. Fesik or Saul H. Rosenberg.

Ethics declarations

Competing interests

S.W.E., A.R.S., D.J.A., M.B., J.D., P.J.H., M.K.J., A.R.K, M.J.M., D.G.N., S-C.H., P.M.N., J.M.O'C., A.O., A.M.P., W.S., S.K.T., B.W., M.D.W., H.Z., S.W.F. and S.H.R. are current or recent employees of Abbott Laboratories. T.O., K.J.T., R.C.A., B.A.B. and T.L. D. are current or recent employees of Idun Pharmaceuticals.

Supplementary information

Supplementary Figure S1

This figure summarizes the synthetic scheme for the chemical synthesis of ABT-737. (PDF 28 kb)

Supplementary Figure S2

This figure contains NMR-derived structures that illustrate the differences between the binding pockets of Bcl-2 and Bcl-XL. (PPT 2187 kb)

Supplementary Figure S3

This figure illustrates the effects of ABT-737 on cytochrome c release from mitochondria isolated from Bak-/-Bax-/- cells that had been stably transfected with either Bak, Bax, or a control plasmid. (PPT 943 kb)

Supplementary Figure S4

This figure illustrates the enhanced survival effected by ABT-737 in the DoHH-2 systemic model of B-cell Lymphoma. (PPT 35 kb)

Supplementary Tables S1-S5

This file contains NMR and structural statistics for the protein complexes illustrated in Figure 1 and Supplementary Figure 2. (DOC 64 kb)

Supplementary Figure Legends

Legends for Supplementary Figures S1-S4. (DOC 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oltersdorf, T., Elmore, S., Shoemaker, A. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). https://doi.org/10.1038/nature03579

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing