Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Slip rate variations on normal faults during glacial–interglacial changes in surface loads

Abstract

Geologic and palaeoseismological data1,2 document a marked increase in the slip rates of the Wasatch fault and three adjacent normal faults in the Basin and Range Province during the Late Pleistocene/Early Holocene epochs3. The cause of this synchronous acceleration of fault slip and the subsequent clustering of earthquakes during the Holocene3 has remained enigmatic, although it has been suggested that the coincidence between the acceleration of slip and the shrinkage of Lake Bonneville after the Last Glacial Maximum may indicate a causal relationship4. Here we use finite-element models of a discrete normal fault within a rheologically layered lithosphere to evaluate the relative importance of two competing processes that affect fault slip: postglacial unloading (the removal of mass), which decreases the slip rate, and lithospheric rebound, which promotes faster slip. We show that lithospheric rebound caused by regression of Lake Bonneville4,5,6 and deglaciation of adjacent mountain ranges7,8 provides a feasible mechanism for the high Holocene rates of faulting in the Wasatch region. Our analysis implies that climate-controlled changes in loads applied to Earth's surface may exert a fundamental control on the slip history of individual normal faults.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Set-up of the finite element model with a discrete normal fault.
Figure 2: Response of the model normal fault to loading and unloading.
Figure 3: Results of a model simulating normal faulting in the Wasatch region.

References

  1. Machette, M., Personius, S. F. & Nelson, A. R. The Wasatch fault zone, Utah—segmentation and history of Holocene earthquakes. J. Struct. Geol. 13, 137–149 (1991)

    ADS  Article  Google Scholar 

  2. McCalpin, J. P. & Nishenko, S. P. Holocene palaeoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah. J. Geophys. Res. 101, 6233–6253 (1996)

    ADS  Article  Google Scholar 

  3. Friedrich, A., Wernicke, B. P., Niemi, N. A., Bennett, R. A. & Davis, J. L. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J. Geophys. Res. 108, 2199 doi:10.1029/2001JB000682 (2003)

    ADS  Article  Google Scholar 

  4. Bills, B. G., Currey, D. R. & Marshall, G. A. Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin. J. Geophys. Res. 99(B11), 22059–22086 (1994)

    ADS  Article  Google Scholar 

  5. Bills, B. G. & May, G. M. Constraints on lithospheric thickness and upper mantle viscosity from isostatic warping of Bonneville, Provo, and Gilbert stage shorelines. J. Geophys. Res. 92, 11493–11508 (1987)

    ADS  Article  Google Scholar 

  6. Oviatt, C. G., Currey, D. R. & Sack, D. Radiocarbon chronology of Lake Bonneville, Eastern Great Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 225–241 (1992)

    Article  Google Scholar 

  7. Madsen, D. B. & Currey, D. R. Late Quaternary glacial and vegetation changes, Little Cottonwood Canyon, Wasatch Mountains, Utah. Quat. Res 12, 254–270 (1979)

    Article  Google Scholar 

  8. Osborn, G. & Bevis, K. Glaciation in the Great Basin of the Western United States. Quat. Sci. Rev 20, 1377–1410 (2001)

    ADS  Article  Google Scholar 

  9. Reid, H. F. Report of the (California) State Earthquake Investigation Commission 1–192 (Publ. 87, Vol. 2, Calif. State Earthquake Invest. Comm., Sacramento, 1910)

    Google Scholar 

  10. Shimazaki, K. & Nakata, T. Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett. 7, 279–282 (1980)

    ADS  Article  Google Scholar 

  11. Thatcher, W. The earthquake deformation cycle, recurrence, and the time-predictable model. J. Geophys. Res. 89, 5674–5680 (1984)

    ADS  Article  Google Scholar 

  12. Grant, L. & Sieh, K. Palaeoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo Plain, California. J. Geophys. Res. 99, 6819–6841 (1994)

    ADS  Article  Google Scholar 

  13. Marco, S., Stein, M., Agnon, A. & Ron, H. Long-term earthquake clustering: A 50000-year palaeoseismic record in the Dead Sea Graben. J. Geophys. Res. 101, 6179–6191 (1996)

    ADS  Article  Google Scholar 

  14. Wallace, R. E. Grouping and migration of surface faulting and variation in slip rates on faults in the Great Basin province. Bull. Seismol. Soc. Am. 77, 868–877 (1987)

    Google Scholar 

  15. Parry, W. T. & Bruhn, R. L. Pore fluid and seismogenic characteristics of the fault rock at depth on the Wasatch Fault, Utah. J. Geophys. Res. 91, 730–744 (1986)

    ADS  CAS  Article  Google Scholar 

  16. Ehlers, T. A., Willett, S. D., Armstrong, P. A. & Chapman, D. S. Exhumation of the central Wasatch Mountains, Utah: 2. Thermokinematic model of exhumation, erosion, and thermochronometer interpretation. J. Geophys. Res. 108, 2173 doi:10.1029/2001JB001723 (2003)

    ADS  Article  Google Scholar 

  17. Schwartz, D. P. & Coppersmith, K. J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. J. Geophys. Res. 89, 5681–5698 (1984)

    ADS  Article  Google Scholar 

  18. Martinez, L. J., Meertens, C. M. & Smith, R. B. Rapid deformation rates along the Wasatch fault zone, Utah, from first GPS measurements with implications for earthquake hazard. Geophys. Res. Lett. 25, 567–570 (1998)

    ADS  Article  Google Scholar 

  19. Malservisi, R., Dixon, T. H., La Femina, P. C. & Furlong, K. P. Holocene slip rates of the Wasatch fault zone, Utah, from geodetic data: Earthquake cycle effects. Geophys. Res. Lett. 30, 1673 doi:10.1029/2003GL017408 (2003)

    ADS  Article  Google Scholar 

  20. Wernicke, B., Axen, G. J. & Snow, J. K. Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada. Geol. Soc. Am. Bull. 100, 1738–1757 (1988)

    ADS  Article  Google Scholar 

  21. Wernicke, B. & Snow, J. K. Cenozoic tectonism in the central Basin and Range: Motion of the Sierran-Great Valley Block. Int. Geol. Rev. 40, 403–410 (1998)

    Article  Google Scholar 

  22. Johnston, A. C. in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound (eds Gregersen, S. & Basham, P. W.) 581–599 (Kluwer, Dordrecht, 1989)

    Book  Google Scholar 

  23. ABAQUS/Standard, User's Manual, version 6.3 (Hibbitt, Karlson and Sorenson Inc., Pawtucket, Rhode Island, 2002).

  24. Ellis, S. & Stöckhert, B. Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust. J. Geophys. Res. 109, B05407, doi:10.1029/2003JB002744 (2004)

    ADS  Article  Google Scholar 

  25. Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  26. Wu, P. & Hasegawa, H. S. Induced stresses and fault potential in eastern Canada due to a disc load: a preliminary analysis. Geophys. J. Int. 125, 415–430 (1996)

    ADS  Article  Google Scholar 

  27. Stewart, S., Sauber, J. & Rose, J. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat. Sci. Rev. 19, 1367–1389 (2000)

    ADS  Article  Google Scholar 

  28. Wu, P., Johnston, P. & Lambeck, K. Postglacial rebound and fault instability in Fennoscandia. Geophys. J. Int. 139, 657–670 (1999)

    ADS  Article  Google Scholar 

  29. Hughen, K. et al. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303, 202–207 (2004)

    ADS  CAS  Article  Google Scholar 

  30. Smith, R. B. et al. Geophysical and tectonic framework of the eastern Basin and Range-Colorado Plateau-Rocky Mountains transition. Geol. Soc. Am. Mem. 172, 205–233 (1989)

    Google Scholar 

Download references

Acknowledgements

We thank A. Friedrich and A. Densmore for discussions. R.H. was supported by a Heisenberg fellowship from the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hetzel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hetzel, R., Hampel, A. Slip rate variations on normal faults during glacial–interglacial changes in surface loads. Nature 435, 81–84 (2005). https://doi.org/10.1038/nature03562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03562

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing