Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics

Abstract

The nature of the martian south polar cap has remained enigmatic since the first spacecraft observations1,2,3,4,5,6. In particular, the presence of a perennial carbon dioxide ice cap, the formation of a vast area of black ‘slab ice’ known as the Cryptic region and the asymmetric springtime retreat of the cap have eluded explanation. Here we present observations and climate modelling that indicate the south pole of Mars is characterized by two distinct regional climates that are the result of dynamical forcing by the largest southern impact basins, Argyre and Hellas. The style of surface frost deposition is controlled by these regional climates. In the cold and stormy conditions that exist poleward of 60° S and extend 180° in longitude west from the Mountains of Mitchel ( 30° W), surface frost accumulation is dominated by precipitation. In the opposite hemisphere, the polar atmosphere is relatively warm and clear and frost accumulation is dominated by direct vapour deposition. It is the differences in these deposition styles that determine the cap albedo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: South pole springtime albedo maps from the Viking and Mars Global Surveyor spacecraft.
Figure 2: Observations from MGS showing south pole climate asymmetry in grain size and δTsat = Tsat - T.
Figure 3: GCM results showing the dependence of the climate asymmetry on mid-latitude topography.

References

  1. 1

    Leighton, R. L. & Murray, B. C. Behaviour of carbon dioxide and other volatiles on Mars. Science 153, 136–144 (1966)

    CAS  Article  ADS  PubMed  Google Scholar 

  2. 2

    Paige, D. A. & Ingersoll, A. P. Annual heat balance of Martian polar caps Viking observations. Science 228, 1160–1168 (1985)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Lindner, B. L. The hemispherical asymmetry in the Martian polar caps. J. Geophys. Res. 98, 3339–3344 (1993)

    CAS  Article  ADS  Google Scholar 

  4. 4

    James, P. B. et al. Seasonal recession of Martian South Polar Cap; 1992 HST observations. Icarus 123, 87–100 (1996)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Kieffer, H. H., Titus, T. N., Mullins, K. F. & Christensen, P. R. Mars south polar spring and summer behaviour observed by TES: Seasonal cap evolution controlled by frost grain size. J. Geophys. Res. 105, 9653–9700 (2000)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Thomas, P. C. et al. North–south geological differences between the residual polar caps on Mars. Nature 404, 161–164 (2000)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Forget, F., Hourdin, F. & Talagrand, O. CO2 snowfall on Mars: Simulation with a general circulation model. Icarus 131, 302–316 (1998)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Titus, T. N., Kieffer, H. H., Mullins, K. F. & Christensen, P. R. TES premapping data: Slab ice and snow flurries in the Martian north polar night. J. Geophys. Res. 106, 23181–23196 (2001)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Pettengill, G. H. & Ford, P. G. Winter clouds over the north Martian polar cap. Geophys. Res. Lett. 27, 609–613 (2001)

    Article  ADS  Google Scholar 

  10. 10

    Ivanov, A. B. & Muhleman, D. O. Cloud reflection observations: results from the Mars Orbiter Laser Altimeter. Icarus 154, 190–206 (2001)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Colaprete, A. & Toon, O. B. Carbon dioxide snow storms during the polar night on Mars. J. Geophys. Res. 107, doi:10.1029/2001JE001758 (2002)

  12. 12

    Colaprete, A., Haberle, R. M. & Toon, O. B. Formation of convective carbon dioxide clouds near the south pole of Mars. J. Geophys. Res. 108, doi:10.1029/2003JE002053 (2003)

  13. 13

    Hinson, D. P., Wilson, R. J., Smith, M. D. & Conrath, B. J. Stationary planetary waves in the atmosphere of Mars during southern winter. J. Geophys. Res. 108, doi:10.1029/2002JE001949 (2003)

  14. 14

    Hinson, D. P. & Wilson, R. J. Transient eddies in the Southern Hemisphere of Mars. Geophys. Res. Lett. 29, doi:10.1029/2001GL014103 (2002)

  15. 15

    Haberle, R. M. et al. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res. 104, 8957–8974 (1999)

    Article  ADS  Google Scholar 

  16. 16

    Colaprete, A. & Toon, O. B. Carbon dioxide clouds in an early dense Martian atmosphere. J. Geophys. Res. 108, doi:10.1029/2002JE001967 (2003)

  17. 17

    Holton, J. R. An Introduction to Dynamic Meteorology 3rd edn (Academic, London, 1992)

    Google Scholar 

  18. 18

    Hollingsworth, J. L. & Barnes, J. R. Forced, stationary planetary waves in Mars' winter atmosphere. J. Atmos. Sci. 53, 428–448 (1996)

    Article  ADS  Google Scholar 

  19. 19

    Banfield, D., Conrath, B. J., Smith, M. D., Christensen, P. R. & Wilson, R. J. Forced waves in the Martian atmosphere from MGS TES nadir data. Icarus 161, 319–345 (2003)

    Article  ADS  Google Scholar 

  20. 20

    Jakosky, B. M. & Haberle, R. M. Year-to-year instability of the Mars south polar cap. J. Geophys. Res. 95, 1359–1365 (1990)

    Article  ADS  Google Scholar 

  21. 21

    Malin, M. C., Caplinger, M. A. & Davis, S. D. Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science 294, 2146–2148 (2001)

    CAS  Article  ADS  PubMed  Google Scholar 

  22. 22

    Byrne, S. & Ingersoll, A. P. A sublimation model for Martian south polar ice features. Science 299, 1051–1053 (2003)

    CAS  Article  ADS  Google Scholar 

  23. 23

    Byrne, S. & Ingersoll, A. P. Martian climate events on timescales of centuries: Evidence from feature morphology in the residual south polar ice cap. Geophys. Res. Lett. 30, doi:10.1029/2003GL017597 (2003)

Download references

Acknowledgements

We acknowledge discussions with F. Montmessin and F. Forget. This work was supported under NASA's Planetary Atmospheres Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony Colaprete.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colaprete, A., Barnes, J., Haberle, R. et al. Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics. Nature 435, 184–188 (2005). https://doi.org/10.1038/nature03561

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.