Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chaotic capture of Jupiter's Trojan asteroids in the early Solar System

Abstract

Jupiter's Trojans are asteroids that follow essentially the same orbit as Jupiter, but lead or trail the planet by an angular distance of 60 degrees (co-orbital motion). They are hypothesized to be planetesimals that formed near Jupiter and were captured onto their current orbits while Jupiter was growing1,2, possibly with the help of gas drag3,4,5,6 and/or collisions7. This idea, however, cannot explain some basic properties of the Trojan population, in particular its broad orbital inclination distribution, which ranges up to 40 degrees (ref. 8). Here we show that the Trojans could have formed in more distant regions and been subsequently captured into co-orbital motion with Jupiter during the time when the giant planets migrated by removing neighbouring planetesimals9,10,11,12. The capture was possible during a short period of time, just after Jupiter and Saturn crossed their mutual 1:2 resonance, when the dynamics of the Trojan region were completely chaotic. Our simulations of this process satisfactorily reproduce the orbital distribution of the Trojans and their total mass.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The stability of Trojans during planetary migration.
Figure 2: Comparison of the orbital distribution of Trojans between model and observations.

References

  1. Marzari, F. & Scholl, H. Capture of Trojans by a growing proto-Jupiter. Icarus 131, 41–51 (1998)

    Article  ADS  Google Scholar 

  2. Fleming, H. J. & Hamilton, D. P. On the origin of the Trojan asteroids: Effects of Jupiter's mass accretion and radial migration. Icarus 148, 479–493 (2000)

    Article  ADS  Google Scholar 

  3. Yoder, C. F. Notes on the origin of the Trojan asteroids. Icarus 40, 341–344 (1979)

    Article  ADS  Google Scholar 

  4. Peale, S. J. The effect of the nebula on the Trojan precursors. Icarus 106, 308–322 (1993)

    Article  ADS  Google Scholar 

  5. Kary, D. M. & Lissauer, J. J. Nebular gas drag and planetary accretion. II. Planet on an eccentric orbit. Icarus 117, 1–24 (1995)

    Article  ADS  Google Scholar 

  6. Kortenkamp, S. J. & Hamilton, D. P. Capture of Trojan asteroids in the early Solar Nebula. Bull. Am. Astron. Soc. 33, 1086 (2001)

    ADS  Google Scholar 

  7. Shoemaker, E. M., Shoemaker, C. S. & Wolfe, R. F. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 487–523 (Univ. Arizona Press, Tucson, 1989)

    Google Scholar 

  8. Marzari, F., Scholl, H., Murray, C. & Lagerkvist, C. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 725–738 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  9. Fernandez, J. A. & Ip, W. H. Some dynamical aspects of the accretion of Uranus and Neptune—The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984)

    Article  ADS  Google Scholar 

  10. Malhotra, R. The origin of Pluto's peculiar orbit. Nature 365, 819–821 (1993)

    Article  ADS  Google Scholar 

  11. Hahn, J. M. & Malhotra, R. Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053 (1999)

    Article  ADS  Google Scholar 

  12. Gomes, R. S., Morbidelli, A. & Levison, H. F. Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004)

    Article  ADS  Google Scholar 

  13. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature doi:10.1038/nature03539 (this issue)

  14. Gomes, R., Tsiganis, K., Morbidelli, A. & Levison, H. F. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature doi:10.1038/nature03676 (this issue)

  15. Gomes, R. S. Dynamical effects of planetary migration on primordial Trojan-type asteroids. Astron. J. 116, 2590–2597 (1998)

    Article  ADS  Google Scholar 

  16. Michtchenko, T. A., Beaugé, C. & Roig, F. Planetary migration and the effects of mean motion resonances on Jupiter's Trojan asteroids. Astron. J. 122, 3485–3491 (2001)

    Article  ADS  Google Scholar 

  17. Kortenkamp, S. J., Malhotra, R. & Michtchenko, T. Survival of Trojan-type companions of Neptune during primordial planet migration. Icarus 167, 347–359 (2004)

    Article  ADS  Google Scholar 

  18. Levison, H. F., Shoemaker, E. M. & Shoemaker, C. S. Dynamical evolution of Jupiter's Trojan asteroids. Nature 385, 42–44 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Milani, A. The Trojan asteroid belt: Proper elements, stability, chaos and families. Celest. Mech. Dyn. Astron. 57, 59–94 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fernández, Y. R., Sheppard, S. S. & Jewitt, D. C. The albedo distribution of Jovian Trojan asteroids. Astron. J. 126, 1563–1574 (2003)

    Article  ADS  Google Scholar 

  21. Barucci, M. A., Cruikshank, D. P., Mottola, S. & Lazzarin, M. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 273–288 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  22. Gomes, R. S. The origin of the Kuiper Belt high-inclination population. Icarus 161, 404–418 (2003)

    Article  ADS  Google Scholar 

  23. Levison, H. F. & Morbidelli, A. The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration. Nature 426, 419–421 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Duncan, M. J. & Levison, H. F. A scattered comet disk and the origin of Jupiter family comets. Science 276, 1670–1672 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Emery, J. P. & Brown, R. H. The surface composition of Trojan asteroids: constraints set by scattering theory. Icarus 170, 131–152 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Levison, H. F. & Duncan, M. J. From the Kuiper Belt to Jupiter-family comets: The spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997)

    Article  ADS  Google Scholar 

  27. Jewitt, D. C., Trujillo, C. A. & Luu, J. X. Population and size distribution of small Jovian Trojan asteroids. Astron. J. 120, 1140–1147 (2000)

    Article  ADS  Google Scholar 

  28. Merline, W. J. et al. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 289–314 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  29. Britt, D. T., Yeomans, D., Housen, K. & Consolmagno, G. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 485–500 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  30. Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the earth's orbit. Astron. J. 101, 2287–2305 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.G. is grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico for financial support of his sabbatical year in the OCA observatory in Nice. The work of K.T. was supported by an EC Marie Curie Individual Fellowship. A.M. and H.F.L. thank the CNRS and the NSF for funding the collaboration between the OCA and the SWRI groups. H.F.L. is grateful to NASA's Origins and PG&G programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morbidelli.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morbidelli, A., Levison, H., Tsiganis, K. et al. Chaotic capture of Jupiter's Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005). https://doi.org/10.1038/nature03540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03540

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing