Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanics of the kinesin step

Abstract

Kinesin is a molecular walking machine that organizes cells by hauling packets of components directionally along microtubules. The physical mechanism that impels directional stepping is uncertain. We show here that, under very high backward loads, the intrinsic directional bias in kinesin stepping can be reversed such that the motor walks sustainedly backwards in a previously undescribed mode of ATP-dependent backward processivity. We find that both forward and backward 8-nm steps occur on the microsecond timescale and that both occur without mechanical substeps on this timescale. The data suggest an underlying mechanism in which, once ATP has bound to the microtubule-attached head, the other head undergoes a diffusional search for its next site, the outcome of which can be biased by an applied load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example optical trapping records.
Figure 2: Stepping behaviour.
Figure 3: Average time course of forward and backward steps.
Figure 4: Model.

Similar content being viewed by others

References

  1. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nature Cell Biol. 5, 1079–1082 (2003)

    Article  CAS  Google Scholar 

  2. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)

    Article  ADS  CAS  Google Scholar 

  5. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997)

    Article  CAS  Google Scholar 

  6. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T. & Higuchi, H. Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nature Cell Biol. 3, 425–428 (2001)

    Article  CAS  Google Scholar 

  8. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Coy, D. L., Wagenbach, M. & Howard, J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274, 3667–3671 (1999)

    Article  CAS  Google Scholar 

  11. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Cross, R. A. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309 (2004)

    Article  CAS  Google Scholar 

  14. Tsiavaliaris, G., Fujita-Becker, S. & Manstein, D. J. Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–561 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Reconditi, M. et al. The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428, 578–581 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nature Cell Biol. 4, 790–797 (2002)

    Article  CAS  Google Scholar 

  18. Okada, Y., Higuchi, H. & Hirokawa, N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574–577 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Block, S. M., Goldstein, L. S. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    Article  ADS  CAS  Google Scholar 

  20. Hunt, A. J., Gittes, F. & Howard, J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67, 766–781 (1994)

    Article  ADS  CAS  Google Scholar 

  21. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Article  CAS  Google Scholar 

  22. Kawaguchi, K. & Ishiwata, S. Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem. Biophys. Res. Commun. 272, 895–899 (2000)

    Article  CAS  Google Scholar 

  23. Kramers, H. A. Brownian motion in a field of force and the diffusion limit of chemical reactions. Physica 7, 284–304 (1940)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Nishiyama, M., Higuchi, H., Ishii, Y., Taniguchi, Y. & Yanagida, T. Single molecule processes on the stepwise movement of ATP-driven molecular motors. Biosystems 71, 145–156 (2003)

    Article  CAS  Google Scholar 

  25. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, Massachusetts, 2001)

    Google Scholar 

  26. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Schief, W. R. & Howard, J. Conformational changes during kinesin motility. Curr. Opin. Cell Biol. 13, 19–28 (2001)

    Article  CAS  Google Scholar 

  29. Rice, S. et al. Thermodynamic properties of the Kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844–1854 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biol. 2, 718–723 (2000)

    Article  CAS  Google Scholar 

  31. Fisher, M. E. & Kolomeisky, A. B. Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl Acad. Sci. USA 98, 7748–7753 (2001)

    Article  ADS  CAS  Google Scholar 

  32. Thomas, N., Imafuku, Y., Kamiya, T. & Tawada, K. Kinesin: a molecular motor with a spring in its step. Proc. R. Soc. Lond. B 269, 2363–2371 (2002)

    Article  CAS  Google Scholar 

  33. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl Acad. Sci. USA 100, 2351–2356 (2003)

    Article  ADS  CAS  Google Scholar 

  34. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 257–318 (1957)

    Article  Google Scholar 

  35. Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Howard for the gift of the Drososphila kinesin, the reviewers of this manuscript for careful and constructive criticism, and Marie Curie Cancer Care for unswerving support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Cross.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Simulated steps added to bead position noise. Testing the detection limits for steps by adding various simulated steps to real measured noise and trying to detect the steps using our algorithm. (PDF 2001 kb)

Supplementary Figure S2

Dwell time distributions at various loads and ATP concentrations. (PDF 764 kb)

Supplementary Figure Legends

Legends to accompany Supplementary Figures S1 and S2. (DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, N., Cross, R. Mechanics of the kinesin step. Nature 435, 308–312 (2005). https://doi.org/10.1038/nature03528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing