Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear elasticity in biological gels

Abstract

The mechanical properties of soft biological tissues are essential to their physiological function and cannot easily be duplicated by synthetic materials. Unlike simple polymer gels, many biological materials—including blood vessels1, mesentery tissue2, lung parenchyma3, cornea4 and blood clots5—stiffen as they are strained, thereby preventing large deformations that could threaten tissue integrity. The molecular structures and design principles responsible for this nonlinear elasticity are unknown. Here we report a molecular theory that accounts for strain-stiffening in a range of molecularly distinct gels formed from cytoskeletal and extracellular proteins and that reveals universal stress–strain relations at low to intermediate strains. The input to this theory is the force–extension curve for individual semi-flexible filaments and the assumptions that biological networks composed of these filaments are homogeneous, isotropic, and that they strain uniformly. This theory shows that systems of filamentous proteins arranged in an open crosslinked mesh invariably stiffen at low strains without requiring a specific architecture or multiple elements with different intrinsic stiffness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurofilament and fibrin protofibril networks.
Figure 2: Dynamic shear storage moduli measured at different strain amplitudes for a series of crosslinked biopolymer networks.
Figure 3: Scaled modulus–strain curves for various biopolymer networks compared to theory and the scaled force–extension relation for a semiflexible polymer.
Figure 4: Experimental data for fibrin protofilaments (dots) at various concentrations, and corresponding theoretical curves (solid lines) as computed from the extended theory including a stretch modulus.

Similar content being viewed by others

References

  1. Shadwick, R. E. Mechanical design in arteries. J. Exp. Biol. 202, 3305–3313 (1999)

    CAS  PubMed  Google Scholar 

  2. Fung, Y. A First Course in Continuum Mechanics (Prentice Hall, Englewood Cliffs, 1994)

    Google Scholar 

  3. Karakaplan, A. D., Bieniek, M. P. & Skalak, R. A mathematical model of lung parenchyma. J. Biomech. Eng. 102, 124–136 (1980)

    Article  CAS  PubMed  Google Scholar 

  4. Hjortdal, J. O. Extensibility of the normo-hydrated human cornea. Acta Ophthalmol. Scand. 73, 12–17 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. Shah, J. V. & Janmey, P. A. Strain hardening of fibrin gels and plasma clots. Rheologica Acta 36, 262–268 (1997)

    Article  CAS  Google Scholar 

  6. Janmey, P. A. et al. The mechanical properties of actin gels. Elastic modulus and filament motions. J. Biol. Chem. 269, 32503–32513 (1994)

    CAS  PubMed  Google Scholar 

  7. Xu, J., Tseng, Y. & Wirtz, D. Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin. J. Biol. Chem. 275, 35886–35892 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Ma, L., Xu, J., Coulombe, P. A. & Wirtz, D. Keratin filament suspensions show unique micromechanical properties. J. Biol. Chem. 274, 19145–19151 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Fixman, M. & Kovac, J. Polymer conformational statistics. III. Modified Gaussian models of stiff chains. J. Chem. Phys. 58, 1564–1568 (1973)

    Article  ADS  CAS  Google Scholar 

  10. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurement of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Marko, J. & Siggia, E. Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  ADS  CAS  Google Scholar 

  12. MacKintosh, F., Käs, J. & Janmey, P. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kroy, K. & Frey, E. Force-extension relation and plateau modulus for wormlike chains. Phys. Rev. Lett. 77, 306–309 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Morse, D. Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys. Rev. E 58, R1237–R1240 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Gittes, F. & MacKintosh, F. C. Dynamic shear modulus of a semiflexible polymer network. Phys. Rev. E 58, R1241–R1244 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Treloar, L. R. G. The Physics of Rubber Elasticity (Clarendon, Oxford, 1975)

    Google Scholar 

  17. Landau, L. D. & Lifshitz, E. M. Statistical Physics I (Pergamon, Oxford, 1980)

    MATH  Google Scholar 

  18. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, Oxford, 1986)

    MATH  Google Scholar 

  19. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Head, D. A., Levine, A. J. & MacKintosh, F. C. Deformation of cross-linked semiflexible polymer networks. Phys. Rev. Lett. 91, 108102 (2003)

    Article  ADS  PubMed  Google Scholar 

  21. Wilhelm, J. & Frey, E. Elasticity of stiff polymer networks. Phys. Rev. Lett. 91, 108103 (2003)

    Article  ADS  PubMed  Google Scholar 

  22. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Grosberg, A. Y. & Khlokhlov, A. R. Statistical Physics of Macromolecules (American Institute of Physics Press, New York, 1994)

    Google Scholar 

  24. Wilhelm, J. & Frey, E. Radial distribution function of semiflexible polymers. Phys. Rev. Lett. 77, 2581–2584 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Leterrier, J. F., Kas, J., Hartwig, J., Vegners, R. & Janmey, P. A. Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin. J. Biol. Chem. 271, 15687–15694 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Janmey, P. A. & Ferry, J. D. Gel formation by fibrin oligomers without addition of monomers. Biopolymers 25, 1337–1344 (1986)

    Article  CAS  PubMed  Google Scholar 

  27. Janmey, P. A., Hvidt, S., Lamb, J. & Stossel, T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345, 89–92 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113, 155–160 (1991)

    Article  CAS  PubMed  Google Scholar 

  29. Wang, L. Z. et al. Purification of salmon clotting factors and their use as tissue sealants. Thromb. Res. 100, 537–548 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J.-F. Leterrier, S. Hvidt, P. Traub, J. Hartwig and E. Sawyer for collaboration in producing the protein networks and electron micrographs. This work was supported in part by the US-NIH and NSF/MRSEC programmes (P.A.J., T.C.L., C.S., J.J.P.) and by the Kavli Institute for Theoretical Physics at the University of California (F.C.M., P.A.J.), where some of this work was initiated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis Storm.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storm, C., Pastore, J., MacKintosh, F. et al. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005). https://doi.org/10.1038/nature03521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03521

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing