An infrared flash contemporaneous with the γ-rays of GRB 041219a


The explosion that results in a cosmic γ-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking1, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows2,3,4. Although observations of afterglows5 continue to refine our understanding of GRB progenitors and relativistic shocks, γ-ray observations alone have not yielded a clear picture of the origin of the prompt emission6 nor details of the central engine. Only one concurrent visible-light transient has been found7 and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Images of the IR flash associated with GRB 041219a.
Figure 2: Evolution of the IR flash associated with GRB 041219a.
Figure 3: Long-timescale variability of the IR transient associated with GRB 041219a.
Figure 4: Colour evolution of the afterglow of GRB 041219a, corrected for extinction due to interstellar dust.


  1. 1

    Fenimore, E. E., Madras, C. D. & Nayakshin, S. Expanding relativistic shells and gamma-ray burst temporal structure. Astrophys. J. 473, 998 (1996)

    ADS  Article  Google Scholar 

  2. 2

    Mészáros, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997)

    ADS  Article  Google Scholar 

  3. 3

    Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. Astrophys. J. 520, 641–649 (1999)

    ADS  Article  Google Scholar 

  4. 4

    Beloborodov, A. M. Radiation front sweeping the ambient medium of gamma-ray bursts. Astrophys. J. 565, 808–828 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. Gamma-ray burst afterglows. Annu. Rev. Astron. Astrophys. 38, 379–425 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Baring, M. G. & Braby, M. L. A study of prompt emission mechanisms in gamma-ray bursts. Astrophys. J. 613, 460–476 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Akerlof, C. et al. Observation of contemporaneous optical radiation from a gamma-ray burst. Nature 398, 400–402 (1999)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gotz, D., Mereghetti, S., Shaw, S., Beck, M. & Borkowski, J. GRB 041219—A long GRB detected by INTEGRAL. GCN Circ. 2866 (2004)

  9. 9

    Fox, D. W. et al. Early optical emission from the γ-ray burst of 4 October 2002. Nature 422, 284–286 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. 10

    Fox, D. W. et al. Discovery of early optical emission from GRB 021211. Astrophys. J. 586, L5–L8 (2003)

    ADS  Article  Google Scholar 

  11. 11

    Li, W., Filippenko, A. V., Chornock, R. & Jha, S. The early light curve of the optical afterglow of GRB 021211. Astrophys. J. 586, L9–L12 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Rykoff, E. S. et al. The early optical afterglow of GRB 030418 and progenitor mass loss. Astrophys. J. 601, 1013–1018 (2004)

    ADS  Article  Google Scholar 

  13. 13

    Klose, S. et al. The very faint K-band afterglow of GRB 020819 and the dust extinction hypothesis of the dark bursts. Astrophys. J. 592, 1025–1034 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Zerbi, F. M. et al. Proc. SPIE 4841, 737–748 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Winkler, C. et al. The INTEGRAL mission. Astron. Astrophys. 411, L1–L6 (2003)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Blake, C. & Bloom, J. S. GRB 041219: Infrared afterglow candidate. GCN Circ., 2870 (2004)

  18. 18

    Vestrand, W. T. et al. A link between prompt optical and prompt γ-ray emission in γ-ray bursts. Nature doi:10.1038/nature03515 (this issue)

  19. 19

    Matthews, K., Soifer, B. T. & McLean, I. in Infrared Astronomy with Arrays, the Next Generation (ed. McLean, I.) 239 (Kluwer, Dordrecht, 1994)

    Google Scholar 

  20. 20

    Hearty, F. et al. NIR observations of GRB 041219. GCN Circ. 2916 (2004)

  21. 21

    Kobayashi, S. Light curves of gamma-ray burst optical flashes. Astrophys. J. 545, 807–812 (2000)

    ADS  Article  Google Scholar 

  22. 22

    Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17–L20 (1998)

    ADS  Article  Google Scholar 

  23. 23

    van der Horst, A., Rol, E. & Strom, R. GRB 041219: Second epoch WSRT radio observations. GCN Circ., 2895 (2004)

  24. 24

    Sari, R. Hydrodynamics of gamma-ray burst afterglow. Astrophys. J. 489, L37–L40 (1997)

    ADS  Article  Google Scholar 

  25. 25

    Zhang, B., Kobayashi, S. & Mészáros, P. Gamma-ray burst early optical afterglows: Implications for the initial Lorentz factor and the central engine. Astrophys. J. 595, 950–954 (2003)

    ADS  Article  Google Scholar 

  26. 26

    Ramirez-Ruiz, E. & Fenimore, E. E. Pulse width evolution in gamma-ray bursts: Evidence for internal shocks. Astrophys. J. 539, 712–717 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Nakar, E. & Piran, T. Early afterglow emission from a reverse shock as a diagnostic tool for gamma-ray burst outflows. Mon. Not. R. Astron. Soc. 353, 647–653 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Moon, D.-S., Cenko, B. & Adams, J. GRB041219: Continued NIR observations. GCN Circ. 2884 (2004)

  29. 29

    Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

    ADS  Article  Google Scholar 

  30. 30

    Cenko, S. B. GRB 041219: Optical afterglow detection. GCN Circ. 2885 (2004)

Download references


J.S.B. was supported by a Junior Fellowship from the Harvard Society of Fellows. PAIRITEL was made possible by a grant from the Harvard Milton Fund. Additional funding from the Smithsonian Institution for the PAIRITEL project is acknowledged. We thank the entire Mt Hopkins Ridge staff for support of PAIRITEL, especially W. Peters, R. Hutchins and T. Groner. J. Huchra is thanked for stewardship of the telescope under adverse conditions in the week leading up to GRB 041219a. This publication makes use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

Author information



Corresponding author

Correspondence to J. S. Bloom.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

The Peters Automated Infrared Imaging Telescope (PAIRITEL) observations of GRB041219a. (PDF 65 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blake, C., Bloom, J., Starr, D. et al. An infrared flash contemporaneous with the γ-rays of GRB 041219a. Nature 435, 181–184 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.