Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts

Abstract

Soft-γ-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806–20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic γ-ray burst. At least a significant fraction of the mysterious short-duration γ-ray bursts may therefore come from extragalactic magnetars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profiles of the 27 December 2004 giant flare.
Figure 2: Spectrum and time history of the initial spike, from the RHESSI and Wind particle detectors.
Figure 3: Time-averaged counts in the tail phase of the giant flare, compared with the ‘trapped fireball’ model.
Figure 4: 3–100-keV phase-averaged energy spectrum of the pulsed tail, from the RHESSI γ-ray detectors.
Figure 5: Detailed profiles of the oscillations, from the RHESSI γ-ray detectors.

Similar content being viewed by others

References

  1. Duncan, R. & Thompson, C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. 392, L9–L13 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Kouveliotou, C. et al. An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806–20. Nature 393, 235–237 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Thompson, C. & Duncan, R. The soft gamma repeaters as very strongly magnetized neutron stars. I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275, 255–300 (1995)

    Article  ADS  Google Scholar 

  4. Kouveliotou, C. et al. Discovery of a magnetar associated with the soft gamma repeater SGR1900 + 14. Astrophys. J. 510, L115–L118 (1999)

    Article  ADS  Google Scholar 

  5. Thompson, C. & Duncan, R. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 408, 194–224 (1993)

    Article  ADS  Google Scholar 

  6. Thompson, C. & Duncan, R. C. The soft gamma repeaters as very strongly magnetized neutron stars II. Quiescent neutrino, X-ray and Alfvén wave emission. Astrophys. J. 473, 322–342 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Mazets, E. et al. A flaring X-ray pulsar in Dorado. Nature 282, 587–589 (1979)

    Article  ADS  Google Scholar 

  8. Hurley, K. et al. A giant periodic flare from the soft γ-ray repeater SGR 1900 + 14. Nature 397, 41–43 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Evans, W. et al. Location of the gamma-ray transient event of 1979 March 5. Astrophys. J. 237, L7–L9 (1980)

    Article  ADS  Google Scholar 

  10. Vrba, F. et al. The discovery of an embedded cluster of high-mass stars near SGR1900 + 14. Astrophys. J. 533, L17–L20 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Borkowski, J. et al. Giant flare from SGR1806–20 detected by INTEGRAL. GCN Circ. 2920 (2004)

  12. Hurley, K. et al. IPN localization of the giant flare from SGR1806–20. GCN Circ. 2921 (2004)

  13. Boggs, S. et al. SGR1806–20, RHESSI observations of the 041227 giant flare. GCN Circ. 2936 (2004)

  14. Mazets, E. et al. The giant outburst from SGR1806–20. GCN Circ. 2922 (2004)

  15. Palmer, D. et al. A giant γ-ray flare from the magnetar SGR 1806–20. Nature doi:10.1038/nature03525 (this issue)

  16. Corbel, S. & Eikenberry, S. The connection between W31, SGR 1806–20, and LBV 1806–20: Distance, extinction, and structure. Astron. Astrophys. 419, 191–201 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Figer, D. F., Najarro, F. & Kudritzki, R. P. The double-lined spectrum of LBV 1806–20. Astrophys. J. 610, L109–L113 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Cline, T. et al. Detection of a fast, intense and unusual gamma ray transient. Astrophys. J. 237, L1–L5 (1980)

    Article  ADS  Google Scholar 

  19. Thompson, C. & Duncan, R. The giant flare of 1998 August 27 from SGR1900 + 14. Radiative mechanism and physical constraints on the source. Astrophys. J. 561, 980–1005 (2001)

    Article  ADS  Google Scholar 

  20. Terasawa, T. et al. Repeated injections of energy in the first 600 ms of the giant flare of SGR 1806–20. Nature doi:10.1038/nature03573 (this issue); preprint at http://arXiv.org/astro-ph/0502315 (2004).

  21. Barat, C. et al. Fine time structure in the 1979 March 5 gamma ray burst. Astron. Astrophys. 126, 400–402 (1983)

    ADS  Google Scholar 

  22. Paczyński, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986)

    Article  ADS  Google Scholar 

  23. Gaensler, B. M. et al. An expanding radio nebula produced by a giant flare from the magnetar SGR 1806–20. Nature doi:10.1038/nature03498 (this issue)

  24. Boggs, S. et al. The giant flare of December 27, 2004 from SGR 1806–20. Astrophys. J. (submitted)

  25. Gogus, E. et al. Temporal and spectral characteristics of short bursts from the soft gamma repeaters 1806–20 and 1900 + 14. Astrophys. J. 558, 228–236 (2001)

    Article  ADS  Google Scholar 

  26. Thompson, C., Lyutikov, M. & Kulkarni, S. Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574, 332–355 (2002)

    Article  ADS  Google Scholar 

  27. Golenetskii, S. et al. Bright bursts from SGR1806–20. GCN Circ. 2823 (2004)

  28. Woods, P. et al. Gradual brightening of SGR1806–20. Astronomer's Telegram 313 (2004)

  29. Lyutikov, M. Explosive reconnection in magnetars. Mon. Not. R. Astron. Soc. 346, 540–554 (1998)

    Article  ADS  Google Scholar 

  30. Woods, P. M. et al. Large torque variations in two soft gamma repeaters. Astrophys. J. 576, 381–390 (2002)

    Article  ADS  Google Scholar 

  31. Duncan, R. Gamma-ray bursts from extragalactic magnetar flares. AIP Conf. Proc. 586, 495–501 (eds Martel, H. & Wheeler, J. C.) (AIP, New York, 2001).

  32. Eichler, D. Waiting for the big one: a new class of soft gamma repeater outbursts. Mon. Not. R. Astron. Soc. 576, 381–392 (2002)

    Google Scholar 

  33. Mazets, E., Golenetskii, S., Guryan, Yu. & Ilyinskii, V. The 5 March 1979 event and the distinct class of short gamma bursts—are they of the same origin? Astrophys. Space Sci. 84, 173–189 (1982)

    Article  ADS  Google Scholar 

  34. Dezalay, J.-P. et al. The hardness-duration diagram of gamma-ray bursts. Astrophys. J. 471, L27–L30 (1996)

    Article  ADS  Google Scholar 

  35. Norris, J., Cline, T., Desai, U. & Teegarden, B. Frequency of fast, narrow gamma ray bursts. Nature 308, 434–435 (1984)

    Article  ADS  Google Scholar 

  36. Hurley, K. Gamma-ray burst observations: past and future, in gamma-ray bursts. AIP Conf. Proc. 265, 3–12 (eds Paciesas, W. & Fishman, G.) (AIP, New York, 1992).

  37. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993)

    Article  ADS  CAS  Google Scholar 

  38. Hurley, K. et al. Afterglow upper limits for four short-duration, hard spectrum gamma-ray bursts. Astrophys. J. 567, 447–453 (2002)

    Article  ADS  Google Scholar 

  39. Paciesas, W. et al. The Fourth BATSE Gamma-Ray Burst Catalog (Revised). Astrophys. J. Suppl. 122, 465–495 (1999)

    Article  ADS  Google Scholar 

  40. Fishman, G. et al. The first BATSE gamma-ray burst catalog. Astrophys. J. Suppl. 92, 229–283 (1994)

    Article  ADS  Google Scholar 

  41. Cross, N. & Driver, S. P. The bivariate brightness function of galaxies. Mon. Not. R. Astron. Soc. 329, 579–598 (2002)

    Article  ADS  Google Scholar 

  42. Lazzati, D., Ramirez-Ruiz, E. & Ghisellini, G. Possible detection of hard X-ray afterglows of short gamma-ray bursts. Astron. Astrophys. 379, L39–L43 (2001)

    Article  ADS  Google Scholar 

  43. Connaughton, V. BATSE observations of gamma-ray burst tails. Astrophys. J. 567, 1028–1036 (2002)

    Article  ADS  Google Scholar 

  44. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004)

    Article  ADS  CAS  Google Scholar 

  45. Fenimore, E. et al. Swift's ability to detect gamma-ray bursts. Preprint at http://arXiv.org/astro-ph/0408513 (2004).

  46. Woods, P. et al. Evidence for a sudden magnetic field reconfiguration in soft gamma repeater SGR1900 + 14. Astrophys. J. 552, 748–755 (2001)

    Article  ADS  Google Scholar 

  47. Lyubarsky, Y., Eichler, D. & Thompson, C. Diagnosing magnetars with transient cooling. Astrophys. J. 580, L69–L72 (2002)

    Article  ADS  Google Scholar 

  48. Lenters, G. T. et al. An extended burst tail from SGR 1900 + 14 with a thermal X-ray spectrum. Astrophys. J. 587, 761–778 (2003)

    Article  ADS  Google Scholar 

  49. Feroci, M., Hurley, K., Duncan, R. & Thompson, C. The giant flare of 1998 August 27 from SGR1900 + 14. I. An interpretive study of BeppoSAX and Ulysses observations. Astrophys. J. 549, 1021–1038 (2001)

    Article  ADS  Google Scholar 

  50. Kulkarni, S. et al. The quiescent counterpart of the soft gamma repeater SGR 0526–66. Astrophys. J. 585, 948–954 (2003)

    Article  ADS  Google Scholar 

  51. Golenetskii, S., Ilyinskii, V. & Mazets, E. Recurrent bursts in GBS0526–66, the source of the 5 March 1979 γ-ray burst. Nature 307, 41–43 (1984)

    Article  ADS  Google Scholar 

  52. Lin, R. et al. A three dimensional plasma and energetic particle experiment for the Wind spacecraft. Space Sci. Rev. 71, 125–153 (1995)

    Article  ADS  Google Scholar 

  53. Cameron, P. B. et al. Detection of a radio counterpart to the 27 December 2004 giant flare from SGR 1806–20. Nature doi:10.1038/nature03605 (this issue)

Download references

Acknowledgements

We are grateful to J. Scalo, E. Vishniac and S. Kannappan for discussions and expert help. In the US, this work was supported by NASA. The INTEGRAL mission is supported by the German government via the DLR agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hurley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This contains information on the detectors, their count rates, their dead times, and other details of the observations. It also explains the details of the calculations used to derive the detectability and rate of magnetar bursts. (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, K., Boggs, S., Smith, D. et al. An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005). https://doi.org/10.1038/nature03519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03519

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing